Kraken: Inherently Parallel Transformers For Efficient Multi-Device Inference
- URL: http://arxiv.org/abs/2408.07802v2
- Date: Sat, 17 Aug 2024 00:58:10 GMT
- Title: Kraken: Inherently Parallel Transformers For Efficient Multi-Device Inference
- Authors: Rohan Baskar Prabhakar, Hengrui Zhang, David Wentzlaff,
- Abstract summary: Kraken is an evolution of the standard Transformer architecture for efficient inference on multi-device systems.
When trained on OpenWebText, Kraken models reach a similar perplexity as standard Transformers.
When tested on the SuperGLUE benchmark, Kraken speeds up Time To First Token by a mean of 35.6% across a range of model sizes.
- Score: 8.527031391688283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Transformer networks are increasingly used in settings where low inference latency can improve the end-user experience and enable new applications. However, autoregressive inference is resource intensive and requires parallelism for efficiency. Parallelism introduces collective communication that is both expensive and represents a phase when hardware resources are underutilized. Towards mitigating this, Kraken is an evolution of the standard Transformer architecture that is designed to complement existing tensor parallelism schemes for efficient inference on multi-device systems. By introducing a fixed degree of intra-layer model parallelism, the architecture allows collective operations to be overlapped with compute, decreasing latency and increasing hardware utilization. When trained on OpenWebText, Kraken models reach a similar perplexity as standard Transformers while also preserving their language modeling capabilities when evaluated on the SuperGLUE benchmark. Importantly, when tested on multi-GPU systems using TensorRT-LLM engines, Kraken speeds up Time To First Token by a mean of 35.6% across a range of model sizes, context lengths, and degrees of tensor parallelism.
Related papers
- Pipette: Automatic Fine-grained Large Language Model Training Configurator for Real-World Clusters [5.190794062263327]
Training large language models (LLMs) is known to be challenging because of the huge computational and memory capacity requirements.
We propose Pipette, which is an automatic fine-grained LLM training for real-world clusters.
arXiv Detail & Related papers (2024-05-28T11:59:44Z) - Retentive Network: A Successor to Transformer for Large Language Models [91.6652200825638]
We propose Retentive Network (RetNet) as a foundation architecture for large language models.
We theoretically derive the connection between recurrence and attention.
Experimental results on language modeling show that RetNet achieves favorable scaling results, parallel training, low-cost deployment, and efficient inference.
arXiv Detail & Related papers (2023-07-17T16:40:01Z) - Flover: A Temporal Fusion Framework for Efficient Autoregressive Model
Parallel Inference [3.005912820808423]
Inference on autoregressive models harnesses a temporal dependency, where the current token's probability distribution is conditioned on preceding tokens.
We propose Flover -- a temporal fusion framework for efficiently inferring multiple requests in parallel.
By orchestrating the token-level parallelism, Flover exhibits hardware optimal efficiency and significantly spares the system resources.
arXiv Detail & Related papers (2023-05-22T20:58:09Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
We propose a novel model architecture that combines the efficient parallelizable training of transformers with the efficient inference of RNNs.
We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers.
arXiv Detail & Related papers (2023-05-22T13:57:41Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
Deep learning applications benefit from using large models with billions of parameters.
Training these models is notoriously expensive due to the need for specialized HPC clusters.
We consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions.
arXiv Detail & Related papers (2023-01-27T18:55:19Z) - On Optimizing the Communication of Model Parallelism [74.15423270435949]
We study a novel and important communication pattern in large-scale model-parallel deep learning (DL)
In cross-mesh resharding, a sharded tensor needs to be sent from a source device mesh to a destination device mesh.
We propose two contributions to address cross-mesh resharding: an efficient broadcast-based communication system, and an "overlapping-friendly" pipeline schedule.
arXiv Detail & Related papers (2022-11-10T03:56:48Z) - RTFormer: Efficient Design for Real-Time Semantic Segmentation with
Transformer [63.25665813125223]
We propose RTFormer, an efficient dual-resolution transformer for real-time semantic segmenation.
It achieves better trade-off between performance and efficiency than CNN-based models.
Experiments on mainstream benchmarks demonstrate the effectiveness of our proposed RTFormer.
arXiv Detail & Related papers (2022-10-13T16:03:53Z) - EnergonAI: An Inference System for 10-100 Billion Parameter Transformer
Models [17.62360528651639]
We propose EnergonAI to solve the challenges of the efficient deployment of 10-100 billion parameter transformer models.
EgonAI adopts a hierarchy-controller system architecture to coordinate multiple devices and efficiently support different parallel patterns.
Compared with the FasterTransformer, we have proven that EnergonAI has superior performance on latency and throughput.
arXiv Detail & Related papers (2022-09-06T10:02:58Z) - Parallel Training of Deep Networks with Local Updates [84.30918922367442]
Local parallelism is a framework which parallelizes training of individual layers in deep networks by replacing global backpropagation with truncated layer-wise backpropagation.
We show results in both vision and language domains across a diverse set of architectures, and find that local parallelism is particularly effective in the high-compute regime.
arXiv Detail & Related papers (2020-12-07T16:38:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.