A Deep Features-Based Approach Using Modified ResNet50 and Gradient Boosting for Visual Sentiments Classification
- URL: http://arxiv.org/abs/2408.07922v1
- Date: Thu, 15 Aug 2024 04:18:40 GMT
- Title: A Deep Features-Based Approach Using Modified ResNet50 and Gradient Boosting for Visual Sentiments Classification
- Authors: Muhammad Arslan, Muhammad Mubeen, Arslan Akram, Saadullah Farooq Abbasi, Muhammad Salman Ali, Muhammad Usman Tariq,
- Abstract summary: This research develops a fusion of deep learning and machine learning algorithms.
Deep feature-based method for multiclass classification has been used to extract deep features from modified ResNet50.
gradient boosting algorithm has been used to classify photos containing emotional content.
- Score: 1.2434714657059942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The versatile nature of Visual Sentiment Analysis (VSA) is one reason for its rising profile. It isn't easy to efficiently manage social media data with visual information since previous research has concentrated on Sentiment Analysis (SA) of single modalities, like textual. In addition, most visual sentiment studies need to adequately classify sentiment because they are mainly focused on simply merging modal attributes without investigating their intricate relationships. This prompted the suggestion of developing a fusion of deep learning and machine learning algorithms. In this research, a deep feature-based method for multiclass classification has been used to extract deep features from modified ResNet50. Furthermore, gradient boosting algorithm has been used to classify photos containing emotional content. The approach is thoroughly evaluated on two benchmarked datasets, CrowdFlower and GAPED. Finally, cutting-edge deep learning and machine learning models were used to compare the proposed strategy. When compared to state-of-the-art approaches, the proposed method demonstrates exceptional performance on the datasets presented.
Related papers
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
We propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD)
It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers.
It can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories.
arXiv Detail & Related papers (2024-10-18T03:31:00Z) - Few-shot Image Classification based on Gradual Machine Learning [6.935034849731568]
Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples.
We propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML)
We show that the proposed approach can improve the SOTA performance by 1-5% in terms of accuracy.
arXiv Detail & Related papers (2023-07-28T12:30:41Z) - Semantic Embedded Deep Neural Network: A Generic Approach to Boost
Multi-Label Image Classification Performance [10.257208600853199]
We introduce a generic semantic-embedding deep neural network to apply the spatial awareness semantic feature.
We observed an Avg.relative improvement of 15.27% in terms of AUC score across all labels compared to the baseline approach.
arXiv Detail & Related papers (2023-05-09T07:44:52Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
Semantic Segmentation [68.8204255655161]
We provide the first study on semantic image segmentation and introduce two new approaches: textitSmartAugment and textitSmartSamplingAugment.
SmartAugment uses Bayesian Optimization to search over a rich space of augmentation strategies and achieves a new state-of-the-art performance in all semantic segmentation tasks we consider.
SmartSamplingAugment, a simple parameter-free approach with a fixed augmentation strategy competes in performance with the existing resource-intensive approaches and outperforms cheap state-of-the-art data augmentation methods.
arXiv Detail & Related papers (2021-10-31T13:04:45Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
Weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recent years.
We present a Context Decoupling Augmentation ( CDA) method to change the inherent context in which the objects appear.
To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-03-02T15:05:09Z) - A Simple and Effective Self-Supervised Contrastive Learning Framework
for Aspect Detection [15.36713547251997]
We propose a self-supervised contrastive learning framework and an attention-based model equipped with a novel smooth self-attention (SSA) module for the UAD task.
Our methods outperform several recent unsupervised and weakly supervised approaches on publicly available benchmark user review datasets.
arXiv Detail & Related papers (2020-09-18T22:13:49Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
It is advantageous to visualize the features considered to be essential for classification.
Existing visualization methods develop high confidence images consisting of both background and foreground features.
In this work, we propose a saliency-driven approach to visualize discriminative features that are considered most important for a given task.
arXiv Detail & Related papers (2020-07-31T06:11:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.