Treat Stillness with Movement: Remote Sensing Change Detection via Coarse-grained Temporal Foregrounds Mining
- URL: http://arxiv.org/abs/2408.08078v1
- Date: Thu, 15 Aug 2024 11:04:26 GMT
- Title: Treat Stillness with Movement: Remote Sensing Change Detection via Coarse-grained Temporal Foregrounds Mining
- Authors: Xixi Wang, Zitian Wang, Jingtao Jiang, Lan Chen, Xiao Wang, Bo Jiang,
- Abstract summary: We revisit the widely adopted bi-temporal images-based framework and propose a novel Coarse-grained Temporal Mining Augmented (CTMA) framework.
To be specific, given the bi-temporal images, we first transform them into a video using temporal operations.
Then, a set of temporal encoders is adopted to extract the motion features from the obtained video for coarse-grained changed region.
- Score: 10.830803079863704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current works focus on addressing the remote sensing change detection task using bi-temporal images. Although good performance can be achieved, however, seldom of they consider the motion cues which may also be vital. In this work, we revisit the widely adopted bi-temporal images-based framework and propose a novel Coarse-grained Temporal Mining Augmented (CTMA) framework. To be specific, given the bi-temporal images, we first transform them into a video using interpolation operations. Then, a set of temporal encoders is adopted to extract the motion features from the obtained video for coarse-grained changed region prediction. Subsequently, we design a novel Coarse-grained Foregrounds Augmented Spatial Encoder module to integrate both global and local information. We also introduce a motion augmented strategy that leverages motion cues as an additional output to aggregate with the spatial features for improved results. Meanwhile, we feed the input image pairs into the ResNet to get the different features and also the spatial blocks for fine-grained feature learning. More importantly, we propose a mask augmented strategy that utilizes coarse-grained changed regions, incorporating them into the decoder blocks to enhance the final changed prediction. Extensive experiments conducted on multiple benchmark datasets fully validated the effectiveness of our proposed framework for remote sensing image change detection. The source code of this paper will be released on https://github.com/Event-AHU/CTM_Remote_Sensing_Change_Detection
Related papers
- Enhancing Perception of Key Changes in Remote Sensing Image Change Captioning [49.24306593078429]
We propose a novel framework for remote sensing image change captioning, guided by Key Change Features and Instruction-tuned (KCFI)
KCFI includes a ViTs encoder for extracting bi-temporal remote sensing image features, a key feature perceiver for identifying critical change areas, and a pixel-level change detection decoder.
To validate the effectiveness of our approach, we compare it against several state-of-the-art change captioning methods on the LEVIR-CC dataset.
arXiv Detail & Related papers (2024-09-19T09:33:33Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
Eliminating image blur produced by various kinds of motion has been a challenging problem.
We propose a novel real-world deblurring filtering model called the Motion-adaptive Separable Collaborative Filter.
Our method provides an effective solution for real-world motion blur removal and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-19T19:44:24Z) - Treating Motion as Option with Output Selection for Unsupervised Video
Object Segmentation [17.71871884366252]
Video object segmentation (VOS) aims to detect the most salient object in a video without external guidance about the object.
Recent methods collaboratively use motion cues extracted from optical flow maps with appearance cues extracted from RGB images.
We propose a novel motion-as-option network by treating motion cues as optional.
arXiv Detail & Related papers (2023-09-26T09:34:13Z) - Remote Sensing Image Change Detection with Graph Interaction [1.8579693774597708]
We propose a bitemporal image graph Interaction network for remote sensing change detection, namely BGINet-CD.
Our model demonstrates superior performance compared to other state-of-the-art methods (SOTA) on the GZ CD dataset.
arXiv Detail & Related papers (2023-07-05T03:32:49Z) - Augmenting Deep Learning Adaptation for Wearable Sensor Data through
Combined Temporal-Frequency Image Encoding [4.458210211781739]
We present a novel modified-recurrent plot-based image representation that seamlessly integrates both temporal and frequency domain information.
We evaluate the proposed method using accelerometer-based activity recognition data and a pretrained ResNet model, and demonstrate its superior performance compared to existing approaches.
arXiv Detail & Related papers (2023-07-03T09:29:27Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
We propose a novel Siamese neural network for change detection task, namely Dual-UNet.
In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels.
Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
arXiv Detail & Related papers (2022-08-12T14:24:09Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z) - Augmented Transformer with Adaptive Graph for Temporal Action Proposal
Generation [79.98992138865042]
We present an augmented transformer with adaptive graph network (ATAG) to exploit both long-range and local temporal contexts for TAPG.
Specifically, we enhance the vanilla transformer by equipping a snippet actionness loss and a front block, dubbed augmented transformer.
An adaptive graph convolutional network (GCN) is proposed to build local temporal context by mining the position information and difference between adjacent features.
arXiv Detail & Related papers (2021-03-30T02:01:03Z) - Coarse-Fine Networks for Temporal Activity Detection in Videos [45.03545172714305]
We introduce 'Co-Fine Networks', a two-stream architecture which benefits from different abstractions of temporal resolution to learn better video representations for long-term motion.
We show that our method can outperform the state-of-the-arts for action detection in public datasets with a significantly reduced compute and memory footprint.
arXiv Detail & Related papers (2021-03-01T20:48:01Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.