An Efficient Replay for Class-Incremental Learning with Pre-trained Models
- URL: http://arxiv.org/abs/2408.08084v1
- Date: Thu, 15 Aug 2024 11:26:28 GMT
- Title: An Efficient Replay for Class-Incremental Learning with Pre-trained Models
- Authors: Weimin Yin, Bin Chen adn Chunzhao Xie, Zhenhao Tan,
- Abstract summary: In class-incremental learning, the steady state among the weight guided by each class center is disrupted, which is significantly correlated with forgetting.
We propose a new method to overcoming forgetting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In general class-incremental learning, researchers typically use sample sets as a tool to avoid catastrophic forgetting during continuous learning. At the same time, researchers have also noted the differences between class-incremental learning and Oracle training and have attempted to make corrections. In recent years, researchers have begun to develop class-incremental learning algorithms utilizing pre-trained models, achieving significant results. This paper observes that in class-incremental learning, the steady state among the weight guided by each class center is disrupted, which is significantly correlated with catastrophic forgetting. Based on this, we propose a new method to overcoming forgetting . In some cases, by retaining only a single sample unit of each class in memory for replay and applying simple gradient constraints, very good results can be achieved. Experimental results indicate that under the condition of pre-trained models, our method can achieve competitive performance with very low computational cost and by simply using the cross-entropy loss.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Few-Shot Class-Incremental Learning with Prior Knowledge [94.95569068211195]
We propose Learning with Prior Knowledge (LwPK) to enhance the generalization ability of the pre-trained model.
Experimental results indicate that LwPK effectively enhances the model resilience against catastrophic forgetting.
arXiv Detail & Related papers (2024-02-02T08:05:35Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
Few-shot class-incremental learning aims at recognizing novel classes continually with limited novel class samples.
Recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions.
We propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes.
arXiv Detail & Related papers (2024-02-01T10:37:41Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - Prediction Error-based Classification for Class-Incremental Learning [39.91805363069707]
We introduce Prediction Error-based Classification (PEC)
PEC computes a class score by measuring the prediction error of a model trained to replicate the outputs of a frozen random neural network on data from that class.
PEC offers several practical advantages, including sample efficiency, ease of tuning, and effectiveness even when data are presented one class at a time.
arXiv Detail & Related papers (2023-05-30T07:43:35Z) - CUDA: Curriculum of Data Augmentation for Long-Tailed Recognition [10.441880303257468]
Class imbalance problems frequently occur in real-world tasks.
To mitigate this problem, many approaches have aimed to balance among given classes by re-weighting or re-sampling training samples.
These re-balancing methods increase the impact of minority classes and reduce the influence of majority classes on the output of models.
Several methods have been developed that increase the representations of minority samples by the features of the majority samples.
arXiv Detail & Related papers (2023-02-10T20:30:22Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - An Empirical Investigation of the Role of Pre-training in Lifelong
Learning [21.995593026269578]
We show that generic pre-training implicitly alleviates the effects of catastrophic forgetting when learning multiple tasks sequentially.
We study this phenomenon by analyzing the loss landscape, finding that pre-trained weights appear to ease forgetting by leading to wider minima.
arXiv Detail & Related papers (2021-12-16T19:00:55Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.