SC3D: Label-Efficient Outdoor 3D Object Detection via Single Click Annotation
- URL: http://arxiv.org/abs/2408.08092v3
- Date: Fri, 15 Nov 2024 05:01:34 GMT
- Title: SC3D: Label-Efficient Outdoor 3D Object Detection via Single Click Annotation
- Authors: Qiming Xia, Hongwei Lin, Wei Ye, Hai Wu, Yadan Luo, Cheng Wang, Chenglu Wen,
- Abstract summary: Training 3D detectors from the LiDAR point cloud typically relies on expensive bounding box annotations.
This paper presents SC3D, an innovative label-efficient method requiring only a single coarse click on the bird's eye view of the 3D point cloud for each frame.
- Score: 23.571581914980058
- License:
- Abstract: LiDAR-based outdoor 3D object detection has received widespread attention. However, training 3D detectors from the LiDAR point cloud typically relies on expensive bounding box annotations. This paper presents SC3D, an innovative label-efficient method requiring only a single coarse click on the bird's eye view of the 3D point cloud for each frame. A key challenge here is the absence of complete geometric descriptions of the target objects from such simple click annotations. To address this issue, our proposed SC3D adopts a progressive pipeline. Initially, we design a mixed pseudo-label generation module that expands limited click annotations into a mixture of bounding box and semantic mask supervision. Next, we propose a mix-supervised teacher model, enabling the detector to learn mixed supervision information. Finally, we introduce a mixed-supervised student network that leverages the teacher model's generalization ability to learn unclicked instances.Experimental results on the widely used nuScenes and KITTI datasets demonstrate that our SC3D with only coarse clicks, which requires only 0.2% annotation cost, achieves state-of-the-art performance compared to weakly-supervised 3D detection methods.The code will be made publicly available.
Related papers
- Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
We propose a novel open-vocabulary monocular 3D object detection framework, dubbed OVM3D-Det.
OVM3D-Det does not require high-precision LiDAR or 3D sensor data for either input or generating 3D bounding boxes.
It employs open-vocabulary 2D models and pseudo-LiDAR to automatically label 3D objects in RGB images, fostering the learning of open-vocabulary monocular 3D detectors.
arXiv Detail & Related papers (2024-11-23T21:37:21Z) - ALPI: Auto-Labeller with Proxy Injection for 3D Object Detection using 2D Labels Only [5.699475977818167]
3D object detection plays a crucial role in various applications such as autonomous vehicles, robotics and augmented reality.
We propose a weakly supervised 3D annotator that relies solely on 2D bounding box annotations from images, along with size priors.
arXiv Detail & Related papers (2024-07-24T11:58:31Z) - iDet3D: Towards Efficient Interactive Object Detection for LiDAR Point
Clouds [39.261055567560724]
We propose iDet3D, an efficient interactive 3D object detector.
iDet3D supports a user-friendly 2D interface, which can ease the cognitive burden of exploring 3D space.
We show that our method can construct precise annotations in a few clicks.
arXiv Detail & Related papers (2023-12-24T09:59:46Z) - Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
We propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels.
Specifically, we design a feature-level constraint to align LiDAR and image features based on object-aware regions.
Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations.
Third, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data.
arXiv Detail & Related papers (2023-12-12T18:57:25Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
This paper aims for high-performance offline LiDAR-based 3D object detection.
We first observe that experienced human annotators annotate objects from a track-centric perspective.
We propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective.
arXiv Detail & Related papers (2023-04-24T17:59:05Z) - Hierarchical Supervision and Shuffle Data Augmentation for 3D
Semi-Supervised Object Detection [90.32180043449263]
State-of-the-art 3D object detectors are usually trained on large-scale datasets with high-quality 3D annotations.
A natural remedy is to adopt semi-supervised learning (SSL) by leveraging a limited amount of labeled samples and abundant unlabeled samples.
This paper introduces a novel approach of Hierarchical Supervision and Shuffle Data Augmentation (HSSDA), which is a simple yet effective teacher-student framework.
arXiv Detail & Related papers (2023-04-04T02:09:32Z) - Weakly Supervised Monocular 3D Object Detection using Multi-View
Projection and Direction Consistency [78.76508318592552]
Monocular 3D object detection has become a mainstream approach in automatic driving for its easy application.
Most current methods still rely on 3D point cloud data for labeling the ground truths used in the training phase.
We propose a new weakly supervised monocular 3D objection detection method, which can train the model with only 2D labels marked on images.
arXiv Detail & Related papers (2023-03-15T15:14:00Z) - Weakly Supervised 3D Object Detection from Point Clouds [27.70180601788613]
3D object detection aims to detect and localize the 3D bounding boxes of objects belonging to specific classes.
Existing 3D object detectors rely on annotated 3D bounding boxes during training, while these annotations could be expensive to obtain and only accessible in limited scenarios.
We propose VS3D, a framework for weakly supervised 3D object detection from point clouds without using any ground truth 3D bounding box for training.
arXiv Detail & Related papers (2020-07-28T03:30:11Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.