FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance
- URL: http://arxiv.org/abs/2408.08189v2
- Date: Fri, 16 Aug 2024 06:51:05 GMT
- Title: FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance
- Authors: Jiasong Feng, Ao Ma, Jing Wang, Bo Cheng, Xiaodan Liang, Dawei Leng, Yuhui Yin,
- Abstract summary: We introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism.
CTGM incorporates the Temporal Information (TII), Temporal Affinity Refiner (TAR), and Temporal Feature Booster (TFB) at the beginning, middle, and end of cross-attention.
- Score: 47.88160253507823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII), Temporal Affinity Refiner (TAR), and Temporal Feature Booster (TFB) at the beginning, middle, and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Lastly, TFB boosts the temporal consistency of latent features. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our video demo, code and model are available at https://360cvgroup.github.io/FancyVideo/.
Related papers
- MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - LatentWarp: Consistent Diffusion Latents for Zero-Shot Video-to-Video
Translation [21.815083817914843]
We propose a new zero-shot video-to-video translation framework, named textitLatentWarp.
Our approach is simple: to constrain the query tokens to be temporally consistent, we further incorporate a warping operation in the latent space.
Experiment results demonstrate the superiority of textitLatentWarp in achieving video-to-video translation with temporal coherence.
arXiv Detail & Related papers (2023-11-01T08:02:57Z) - ConditionVideo: Training-Free Condition-Guided Text-to-Video Generation [33.37279673304]
We introduce ConditionVideo, a training-free approach to text-to-video generation based on the provided condition, video, and input text.
ConditionVideo generates realistic dynamic videos from random noise or given scene videos.
Our method exhibits superior performance in terms of frame consistency, clip score, and conditional accuracy, outperforming other compared methods.
arXiv Detail & Related papers (2023-10-11T17:46:28Z) - Free-Bloom: Zero-Shot Text-to-Video Generator with LLM Director and LDM
Animator [59.589919015669274]
This study focuses on zero-shot text-to-video generation considering the data- and cost-efficient.
We propose a novel Free-Bloom pipeline that harnesses large language models (LLMs) as the director to generate a semantic-coherence prompt sequence.
We also propose a series of annotative modifications to adapting LDMs in the reverse process, including joint noise sampling, step-aware attention shift, and dual-path.
arXiv Detail & Related papers (2023-09-25T19:42:16Z) - VideoComposer: Compositional Video Synthesis with Motion Controllability [52.4714732331632]
VideoComposer allows users to flexibly compose a video with textual conditions, spatial conditions, and more importantly temporal conditions.
We introduce the motion vector from compressed videos as an explicit control signal to provide guidance regarding temporal dynamics.
In addition, we develop a Spatio-Temporal Condition encoder (STC-encoder) that serves as a unified interface to effectively incorporate the spatial and temporal relations of sequential inputs.
arXiv Detail & Related papers (2023-06-03T06:29:02Z) - DirecT2V: Large Language Models are Frame-Level Directors for Zero-Shot
Text-to-Video Generation [37.25815760042241]
This paper introduces a new framework, dubbed DirecT2V, to generate text-to-video (T2V) videos.
We equip a diffusion model with a novel value mapping method and dual-softmax filtering, which do not require any additional training.
The experimental results validate the effectiveness of our framework in producing visually coherent and storyful videos.
arXiv Detail & Related papers (2023-05-23T17:57:09Z) - Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation [55.36617538438858]
We propose a novel approach that strengthens the interaction between spatial and temporal perceptions.
We curate a large-scale and open-source video dataset called HD-VG-130M.
arXiv Detail & Related papers (2023-05-18T11:06:15Z) - Towards Smooth Video Composition [59.134911550142455]
Video generation requires consistent and persistent frames with dynamic content over time.
This work investigates modeling the temporal relations for composing video with arbitrary length, from a few frames to even infinite, using generative adversarial networks (GANs)
We show that the alias-free operation for single image generation, together with adequately pre-learned knowledge, brings a smooth frame transition without compromising the per-frame quality.
arXiv Detail & Related papers (2022-12-14T18:54:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.