Heavy Labels Out! Dataset Distillation with Label Space Lightening
- URL: http://arxiv.org/abs/2408.08201v1
- Date: Thu, 15 Aug 2024 15:08:58 GMT
- Title: Heavy Labels Out! Dataset Distillation with Label Space Lightening
- Authors: Ruonan Yu, Songhua Liu, Zigeng Chen, Jingwen Ye, Xinchao Wang,
- Abstract summary: HeLlO aims at effective image-to-label projectors, with which synthetic labels can be directly generated online from synthetic images.
We demonstrate that with only about 0.003% of the original storage required for a complete set of soft labels, we achieve comparable performance to current state-of-the-art dataset distillation methods on large-scale datasets.
- Score: 69.67681224137561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dataset distillation or condensation aims to condense a large-scale training dataset into a much smaller synthetic one such that the training performance of distilled and original sets on neural networks are similar. Although the number of training samples can be reduced substantially, current state-of-the-art methods heavily rely on enormous soft labels to achieve satisfactory performance. As a result, the required storage can be comparable even to original datasets, especially for large-scale ones. To solve this problem, instead of storing these heavy labels, we propose a novel label-lightening framework termed HeLlO aiming at effective image-to-label projectors, with which synthetic labels can be directly generated online from synthetic images. Specifically, to construct such projectors, we leverage prior knowledge in open-source foundation models, e.g., CLIP, and introduce a LoRA-like fine-tuning strategy to mitigate the gap between pre-trained and target distributions, so that original models for soft-label generation can be distilled into a group of low-rank matrices. Moreover, an effective image optimization method is proposed to further mitigate the potential error between the original and distilled label generators. Extensive experiments demonstrate that with only about 0.003% of the original storage required for a complete set of soft labels, we achieve comparable performance to current state-of-the-art dataset distillation methods on large-scale datasets. Our code will be available.
Related papers
- Label-Augmented Dataset Distillation [13.449340904911725]
We introduce Label-Augmented dataset Distillation (LADD) to enhance dataset distillation with label augmentations.
LADD sub-samples each synthetic image, generating additional dense labels to capture rich semantics.
With three high-performance dataset distillation algorithms, LADD achieves remarkable gains by an average of 14.9% in accuracy.
arXiv Detail & Related papers (2024-09-24T16:54:22Z) - One Category One Prompt: Dataset Distillation using Diffusion Models [22.512552596310176]
We introduce Diffusion Models (D3M) as a novel paradigm for dataset distillation, leveraging recent advancements in generative text-to-image foundation models.
Our approach utilizes textual inversion, a technique for fine-tuning text-to-image generative models, to create concise and informative representations for large datasets.
arXiv Detail & Related papers (2024-03-11T20:23:59Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Synthetic Augmentation with Large-scale Unconditional Pre-training [4.162192894410251]
We propose a synthetic augmentation method called HistoDiffusion to reduce the dependency on annotated data.
HistoDiffusion can be pre-trained on large-scale unlabeled datasets and later applied to a small-scale labeled dataset for augmented training.
We evaluate our proposed method by pre-training on three histopathology datasets and testing on a histopathology dataset of colorectal cancer (CRC) excluded from the pre-training datasets.
arXiv Detail & Related papers (2023-08-08T03:34:04Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
We propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds.
Our method co-designs an efficient labeling process with semi/weakly supervised learning.
Our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
arXiv Detail & Related papers (2022-10-14T19:13:36Z) - Dataset Condensation with Latent Space Knowledge Factorization and
Sharing [73.31614936678571]
We introduce a novel approach for solving dataset condensation problem by exploiting the regularity in a given dataset.
Instead of condensing the dataset directly in the original input space, we assume a generative process of the dataset with a set of learnable codes.
We experimentally show that our method achieves new state-of-the-art records by significant margins on various benchmark datasets.
arXiv Detail & Related papers (2022-08-21T18:14:08Z) - Semi-weakly Supervised Contrastive Representation Learning for Retinal
Fundus Images [0.2538209532048867]
We propose a semi-weakly supervised contrastive learning framework for representation learning using semi-weakly annotated images.
We empirically validate the transfer learning performance of SWCL on seven public retinal fundus datasets.
arXiv Detail & Related papers (2021-08-04T15:50:09Z) - Flexible Dataset Distillation: Learn Labels Instead of Images [44.73351338165214]
Distilling labels with our new algorithm leads to improved results over prior image-based distillation.
We show it to be more effective than the prior image-based approach to dataset distillation.
arXiv Detail & Related papers (2020-06-15T17:37:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.