Enhancing Sharpness-Aware Minimization by Learning Perturbation Radius
- URL: http://arxiv.org/abs/2408.08222v1
- Date: Thu, 15 Aug 2024 15:40:57 GMT
- Title: Enhancing Sharpness-Aware Minimization by Learning Perturbation Radius
- Authors: Xuehao Wang, Weisen Jiang, Shuai Fu, Yu Zhang,
- Abstract summary: We propose a bilevel optimization framework called LEarning the perTurbation radiuS to learn the perturbation radius for sharpness-aware minimization algorithms.
Experimental results on various architectures and benchmark datasets in computer vision and natural language processing demonstrate the effectiveness of the proposed LETS method.
- Score: 6.78775404181577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sharpness-aware minimization (SAM) is to improve model generalization by searching for flat minima in the loss landscape. The SAM update consists of one step for computing the perturbation and the other for computing the update gradient. Within the two steps, the choice of the perturbation radius is crucial to the performance of SAM, but finding an appropriate perturbation radius is challenging. In this paper, we propose a bilevel optimization framework called LEarning the perTurbation radiuS (LETS) to learn the perturbation radius for sharpness-aware minimization algorithms. Specifically, in the proposed LETS method, the upper-level problem aims at seeking a good perturbation radius by minimizing the squared generalization gap between the training and validation losses, while the lower-level problem is the SAM optimization problem. Moreover, the LETS method can be combined with any variant of SAM. Experimental results on various architectures and benchmark datasets in computer vision and natural language processing demonstrate the effectiveness of the proposed LETS method in improving the performance of SAM.
Related papers
- $\boldsymbolμ\mathbf{P^2}$: Effective Sharpness Aware Minimization Requires Layerwise Perturbation Scaling [49.25546155981064]
We study the infinite-width limit of neural networks trained with Sharpness Aware Minimization (SAM)
Our findings reveal that the dynamics of standard SAM effectively reduce to applying SAM solely in the last layer in wide neural networks.
In contrast, we identify a stable parameterization with layerwise scaling perturbation, which we call $textitMaximal Update and Perturbation $ ($mu$P$2$), that ensures all layers are both feature learning and effectively perturbed in the limit.
arXiv Detail & Related papers (2024-10-31T16:32:04Z) - Adaptive Adversarial Cross-Entropy Loss for Sharpness-Aware Minimization [2.8775022881551666]
Sharpness-Aware Minimization (SAM) was proposed to enhance model generalization.
SAM consists of two main steps, the weight perturbation step and the weight updating step.
We propose the Adaptive Adversarial Cross-Entropy (AACE) loss function to replace standard cross-entropy loss for SAM's perturbation.
arXiv Detail & Related papers (2024-06-20T14:00:01Z) - Systematic Investigation of Sparse Perturbed Sharpness-Aware
Minimization Optimizer [158.2634766682187]
Deep neural networks often suffer from poor generalization due to complex and non- unstructured loss landscapes.
SharpnessAware Minimization (SAM) is a popular solution that smooths the loss by minimizing the change of landscape when adding a perturbation.
In this paper, we propose Sparse SAM (SSAM), an efficient and effective training scheme that achieves perturbation by a binary mask.
arXiv Detail & Related papers (2023-06-30T09:33:41Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
Sharpness-Aware Minimization (SAM) modifies the underlying loss function to guide descent methods towards flatter minima.
Recent work suggests that mSAM can outperform SAM in terms of test accuracy.
This paper presents a comprehensive empirical evaluation of mSAM on various tasks and datasets.
arXiv Detail & Related papers (2022-12-07T00:37:55Z) - Rethinking Sharpness-Aware Minimization as Variational Inference [1.749935196721634]
Sharpness-aware (SAM) aims to improve the generalisation of gradient-based learning by seeking out flat minima.
We establish connections between SAM and Mean-Field Variational Inference (MFVI) of neural network parameters.
arXiv Detail & Related papers (2022-10-19T10:35:54Z) - Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation
Approach [132.37966970098645]
One of the popular solutions is Sharpness-Aware Minimization (SAM), which minimizes the change of weight loss when adding a perturbation.
In this paper, we propose an efficient effective training scheme coined as Sparse SAM (SSAM), which achieves double overhead of common perturbations.
In addition, we theoretically prove that S can converge at the same SAM, i.e., $O(log T/sqrtTTTTTTTTTTTTTTTTT
arXiv Detail & Related papers (2022-10-11T06:30:10Z) - Sharpness-Aware Training for Free [163.1248341911413]
SharpnessAware Minimization (SAM) has shown that minimizing a sharpness measure, which reflects the geometry of the loss landscape, can significantly reduce the generalization error.
Sharpness-Aware Training Free (SAF) mitigates the sharp landscape at almost zero computational cost over the base.
SAF ensures the convergence to a flat minimum with improved capabilities.
arXiv Detail & Related papers (2022-05-27T16:32:43Z) - Towards Efficient and Scalable Sharpness-Aware Minimization [81.22779501753695]
We propose a novel algorithm LookSAM that only periodically calculates the inner gradient ascent.
LookSAM achieves similar accuracy gains to SAM while being tremendously faster.
We are the first to successfully scale up the batch size when training Vision Transformers (ViTs)
arXiv Detail & Related papers (2022-03-05T11:53:37Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
This paper proposes Efficient Sharpness Aware Minimizer (M) which boosts SAM s efficiency at no cost to its generalization performance.
M includes two novel and efficient training strategies-StochasticWeight Perturbation and Sharpness-Sensitive Data Selection.
We show, via extensive experiments on the CIFAR and ImageNet datasets, that ESAM enhances the efficiency over SAM from requiring 100% extra computations to 40% vis-a-vis bases.
arXiv Detail & Related papers (2021-10-07T02:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.