SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training
- URL: http://arxiv.org/abs/2408.08295v1
- Date: Thu, 15 Aug 2024 17:50:07 GMT
- Title: SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training
- Authors: Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, Yunchao Wei,
- Abstract summary: We present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT.
Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Alignment (S++) framework.
Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Alignment to align the disjoint classification layers in a post-hoc fashion.
- Score: 68.7896349660824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, continual learning with pre-training (CLPT) has received widespread interest, instead of its traditional focus of training from scratch. The use of strong pre-trained models (PTMs) can greatly facilitate knowledge transfer and alleviate catastrophic forgetting, but also suffers from progressive overfitting of pre-trained knowledge into specific downstream tasks. A majority of current efforts often keep the PTMs frozen and incorporate task-specific prompts to instruct representation learning, coupled with a prompt selection process for inference. However, due to the limited capacity of prompt parameters, this strategy demonstrates only sub-optimal performance in continual learning. In comparison, tuning all parameters of PTMs often provides the greatest potential for representation learning, making sequential fine-tuning (Seq FT) a fundamental baseline that has been overlooked in CLPT. To this end, we present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT. Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Classifier Alignment (SLCA++) framework to unleash the power of Seq FT, serving as a strong baseline approach for CLPT. Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Classifier Alignment to align the disjoint classification layers in a post-hoc fashion. We further enhance the efficacy of SL with a symmetric cross-entropy loss, as well as employ a parameter-efficient strategy to implement Seq FT with SLCA++. Across a variety of continual learning scenarios on image classification benchmarks, our approach provides substantial improvements and outperforms state-of-the-art methods by a large margin. Code: https://github.com/GengDavid/SLCA.
Related papers
- SAFE: Slow and Fast Parameter-Efficient Tuning for Continual Learning with Pre-Trained Models [26.484208658326857]
Continual learning aims to incrementally acquire new concepts in data streams while resisting forgetting previous knowledge.
With the rise of powerful pre-trained models (PTMs), there is a growing interest in training incremental learning systems.
arXiv Detail & Related papers (2024-11-04T15:34:30Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - FeTT: Continual Class Incremental Learning via Feature Transformation Tuning [19.765229703131876]
Continual learning (CL) aims to extend deep models from static and enclosed environments to dynamic and complex scenarios.
Recent CL models have gradually shifted towards the utilization of pre-trained models with parameter-efficient fine-tuning strategies.
This paper proposes feature transformation tuning (FeTT) model to non-parametrically fine-tune backbone features across all tasks.
arXiv Detail & Related papers (2024-05-20T06:33:50Z) - Enhancing Few-shot CLIP with Semantic-Aware Fine-Tuning [61.902254546858465]
Methods based on Contrastive Language-Image Pre-training have exhibited promising performance in few-shot adaptation tasks.
We propose fine-tuning the parameters of the attention pooling layer during the training process to encourage the model to focus on task-specific semantics.
arXiv Detail & Related papers (2023-11-08T05:18:57Z) - SLCA: Slow Learner with Classifier Alignment for Continual Learning on a
Pre-trained Model [73.80068155830708]
We present an extensive analysis for continual learning on a pre-trained model (CLPM)
We propose a simple but extremely effective approach named Slow Learner with Alignment (SLCA)
Across a variety of scenarios, our proposal provides substantial improvements for CLPM.
arXiv Detail & Related papers (2023-03-09T08:57:01Z) - Multimodal Parameter-Efficient Few-Shot Class Incremental Learning [1.9220716793379256]
Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions.
To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets.
CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.
arXiv Detail & Related papers (2023-03-08T17:34:15Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
Transfer learning approaches have recently achieved promising results on the few-shot detection task.
These approaches suffer from catastrophic forgetting'' issue due to finetuning of base detector.
We tackle the aforementioned issues in this work.
arXiv Detail & Related papers (2022-10-10T20:31:19Z) - DLCFT: Deep Linear Continual Fine-Tuning for General Incremental
Learning [29.80680408934347]
We propose an alternative framework to incremental learning where we continually fine-tune the model from a pre-trained representation.
Our method takes advantage of linearization technique of a pre-trained neural network for simple and effective continual learning.
We show that our method can be applied to general continual learning settings, we evaluate our method in data-incremental, task-incremental, and class-incremental learning problems.
arXiv Detail & Related papers (2022-08-17T06:58:14Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.