Classification of High-dimensional Time Series in Spectral Domain using Explainable Features
- URL: http://arxiv.org/abs/2408.08388v1
- Date: Thu, 15 Aug 2024 19:10:12 GMT
- Title: Classification of High-dimensional Time Series in Spectral Domain using Explainable Features
- Authors: Sarbojit Roy, Malik Shahid Sultan, Hernando Ombao,
- Abstract summary: We propose a model-based approach for classifying high-dimensional stationary time series.
Our approach emphasizes the interpretability of model parameters, making it especially suitable for fields like neuroscience.
The novelty of our method lies in the interpretability of the model parameters, addressing critical needs in neuroscience.
- Score: 8.656881800897661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable classification of time series presents significant challenges in high dimensions. Traditional feature selection methods in the frequency domain often assume sparsity in spectral density matrices (SDMs) or their inverses, which can be restrictive for real-world applications. In this article, we propose a model-based approach for classifying high-dimensional stationary time series by assuming sparsity in the difference between inverse SDMs. Our approach emphasizes the interpretability of model parameters, making it especially suitable for fields like neuroscience, where understanding differences in brain network connectivity across various states is crucial. The estimators for model parameters demonstrate consistency under appropriate conditions. We further propose using standard deep learning optimizers for parameter estimation, employing techniques such as mini-batching and learning rate scheduling. Additionally, we introduce a method to screen the most discriminatory frequencies for classification, which exhibits the sure screening property under general conditions. The flexibility of the proposed model allows the significance of covariates to vary across frequencies, enabling nuanced inferences and deeper insights into the underlying problem. The novelty of our method lies in the interpretability of the model parameters, addressing critical needs in neuroscience. The proposed approaches have been evaluated on simulated examples and the `Alert-vs-Drowsy' EEG dataset.
Related papers
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data.
Online sequential IWAE (OSIWAE) allows for online learning of both model parameters and a Markovian recognition model for inferring latent states.
This approach is more theoretically well-founded than recently proposed online variational SMC methods.
arXiv Detail & Related papers (2024-11-04T16:12:37Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Time Series Clustering with General State Space Models via Stochastic Variational Inference [0.0]
We propose a novel method of model-based time series clustering with mixtures of general state space models (MSSMs)
An advantage of the proposed method is that it enables the use of time series models appropriate to the specific time series.
Experiments on simulated datasets show that the proposed method is effective for clustering, parameter estimation, and estimating the number of clusters.
arXiv Detail & Related papers (2024-06-29T12:48:53Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Data-driven Preference Learning Methods for Sorting Problems with
Multiple Temporal Criteria [17.673512636899076]
This study presents novel preference learning approaches to multiple criteria sorting problems in the presence of temporal criteria.
To enhance scalability and accommodate learnable time discount factors, we introduce a novel monotonic Recurrent Neural Network (mRNN)
The proposed mRNN can describe the preference dynamics by depicting marginal value functions and personalized time discount factors along with time.
arXiv Detail & Related papers (2023-09-22T05:08:52Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
This paper proposes a novel sparse infinite-order VAR model for high-dimensional time series.
The temporal and cross-sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately.
Greater statistical efficiency and interpretability can be achieved with little loss of temporal information.
arXiv Detail & Related papers (2022-09-02T17:14:24Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.