Don't Click the Bait: Title Debiasing News Recommendation via Cross-Field Contrastive Learning
- URL: http://arxiv.org/abs/2408.08538v1
- Date: Fri, 16 Aug 2024 05:51:00 GMT
- Title: Don't Click the Bait: Title Debiasing News Recommendation via Cross-Field Contrastive Learning
- Authors: Yijie Shu, Xiaokun Zhang, Youlin Wu, Bo Xu, Liang Yang, Hongfei Lin,
- Abstract summary: We propose a Title Debiasing News Recommendation with Cross-field Contrastive learning (TDNR-C2) to overcome the title bias by incorporating news abstract.
Specifically, a multi-field knowledge extraction module is devised to extract multi-view knowledge about news from various fields.
We present a cross-field contrastive learning module to conduct bias removal via contrasting learned knowledge from title and abstract fileds.
- Score: 16.467106824672566
- License:
- Abstract: News recommendation emerges as a primary means for users to access content of interest from the vast amount of news. The title clickbait extensively exists in news domain and increases the difficulty for news recommendation to offer satisfactory services for users. Fortunately, we find that news abstract, as a critical field of news, aligns cohesively with the news authenticity. To this end, we propose a Title Debiasing News Recommendation with Cross-field Contrastive learning (TDNR-C2) to overcome the title bias by incorporating news abstract. Specifically, a multi-field knowledge extraction module is devised to extract multi-view knowledge about news from various fields. Afterwards, we present a cross-field contrastive learning module to conduct bias removal via contrasting learned knowledge from title and abstract fileds. Experimental results on a real-world dataset demonstrate the superiority of the proposed TDNR-C2 over existing state-of-the-art methods. Further analysis also indicates the significance of news abstract for title debiasing.
Related papers
- From Nuisance to News Sense: Augmenting the News with Cross-Document
Evidence and Context [25.870137795858522]
We present NEWSSENSE, a novel sensemaking tool and reading interface designed to collect and integrate information from multiple news articles on a central topic.
NEWSSENSE augments a central, grounding article of the user's choice by linking it to related articles from different sources.
Our pilot study shows that NEWSSENSE has the potential to help users identify key information, verify the credibility of news articles, and explore different perspectives.
arXiv Detail & Related papers (2023-10-06T21:15:11Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
"Prompt-and-Align" (P&A) is a novel prompt-based paradigm for few-shot fake news detection.
We show that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
arXiv Detail & Related papers (2023-09-28T13:19:43Z) - TieFake: Title-Text Similarity and Emotion-Aware Fake News Detection [15.386007761649251]
We propose a novel Title-Text similarity and emotion-aware Fake news detection (TieFake) method by jointly modeling the multi-modal context information and the author sentiment.
Specifically, we employ BERT and ResNeSt to learn the representations for text and images, and utilize publisher emotion extractor to capture the author's subjective emotion in the news content.
arXiv Detail & Related papers (2023-04-19T04:47:36Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Designing and Evaluating Interfaces that Highlight News Coverage
Diversity Using Discord Questions [84.55145223950427]
This paper shows that navigating large source collections for a news story can be challenging without further guidance.
We design three interfaces -- the Annotated Article, the Recomposed Article, and the Question Grid -- aimed at accompanying news readers in discovering coverage diversity while they read.
arXiv Detail & Related papers (2023-02-17T16:59:31Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Two-Stage Neural Contextual Bandits for Personalised News Recommendation [50.3750507789989]
Existing personalised news recommendation methods focus on exploiting user interests and ignores exploration in recommendation.
We build on contextual bandits recommendation strategies which naturally address the exploitation-exploration trade-off.
We use deep learning representations for users and news, and generalise the neural upper confidence bound (UCB) policies to generalised additive UCB and bilinear UCB.
arXiv Detail & Related papers (2022-06-26T12:07:56Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - Neural News Recommendation with Event Extraction [0.0]
A key challenge of online news recommendation is to help users find articles they are interested in.
Traditional news recommendation methods usually use single news information, which is insufficient to encode news and user representation.
We propose an Event Extraction-based News Recommendation framework to overcome these shortcomings.
arXiv Detail & Related papers (2021-11-09T11:56:38Z) - Supervised Contrastive Learning for Multimodal Unreliable News Detection
in COVID-19 Pandemic [16.43888233012092]
We propose a BERT-based multimodal unreliable news detection framework.
It captures both textual and visual information from unreliable articles.
We show that our model outperforms a number of competitive baselines in unreliable news detection.
arXiv Detail & Related papers (2021-09-04T11:53:37Z) - SAFE: Similarity-Aware Multi-Modal Fake News Detection [8.572654816871873]
We propose a new method to detect fake news based on its text, images, or their "mismatches"
Such representations of news textual and visual information along with their relationship are jointly learned and used to predict fake news.
We conduct extensive experiments on large-scale real-world data, which demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2020-02-19T02:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.