ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models
- URL: http://arxiv.org/abs/2408.08554v2
- Date: Fri, 23 Aug 2024 01:09:08 GMT
- Title: ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models
- Authors: Chao Zeng, Songwei Liu, Yusheng Xie, Hong Liu, Xiaojian Wang, Miao Wei, Shu Yang, Fangmin Chen, Xing Mei,
- Abstract summary: We introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM.
It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU.
- Score: 9.444063879246242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have revolutionized natural language processing tasks. However, their practical application is constrained by substantial memory and computational demands. Post-training quantization (PTQ) is considered an effective method to accelerate LLM inference. Despite its growing popularity in LLM model compression, PTQ deployment faces two major challenges. First, low-bit quantization leads to performance degradation. Second, restricted by the limited integer computing unit type on GPUs, quantized matrix operations with different precisions cannot be effectively accelerated. To address these issues, we introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM. It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU. ABQ-LLM introduces several key innovations: (1) a distribution correction method for transformer blocks to mitigate distribution differences caused by full quantization of weights and activations, improving performance at low bit-widths. (2) the bit balance strategy to counteract performance degradation from asymmetric distribution issues at very low bit-widths (e.g., 2-bit). (3) an innovative quantization acceleration framework that reconstructs the quantization matrix multiplication of arbitrary precision combinations based on BTC (Binary TensorCore) equivalents, gets rid of the limitations of INT4/INT8 computing units. ABQ-LLM can convert each component bit width gain into actual acceleration gain, maximizing performance under mixed precision(e.g., W6A6, W2A8). Based on W2*A8 quantization configuration on LLaMA-7B model, it achieved a WikiText2 perplexity of 7.59 (2.17$\downarrow $ vs 9.76 in AffineQuant). Compared to SmoothQuant, we realized 1.6$\times$ acceleration improvement and 2.7$\times$ memory compression gain.
Related papers
- EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss.
We propose Efficient Quantization-Aware Training (EfficientQAT), a more feasible QAT algorithm.
EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP)
arXiv Detail & Related papers (2024-07-10T17:53:30Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval.
We provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed.
arXiv Detail & Related papers (2024-01-11T18:54:44Z) - Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM [6.85331857224501]
Large Language Models (LLMs) pose significant hardware challenges related to memory requirements and computational ability.
There are two mainstream quantization schemes for LLMs: coarse-grained ($textite.g.,$ channel-wise) quantization and fine-grained ($textite.g.,$ group-wise) quantization.
We introduce Dual Grained Quantization (DGQ), a novel A8W4 quantization for LLM that maintains superior performance while ensuring fast inference speed.
arXiv Detail & Related papers (2023-10-07T14:50:28Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMM is a lookup table based approach for the execution of ultra low-precision convolutional neural networks on SIMD hardware.
Our implementation outperforms corresponding 8-bit integer kernels by up to 1.74x on x86 platforms.
arXiv Detail & Related papers (2023-04-18T15:13:10Z) - 8-bit Optimizers via Block-wise Quantization [57.25800395197516]
Statefuls maintain statistics over time, e.g., the exponentially smoothed sum (SGD with momentum) or squared sum (Adam) of past values.
This state can be used to accelerate optimization compared to plain gradient descent but uses memory that might otherwise be allocated to model parameters.
In this paper, we develop first gradients that use 8-bit statistics while maintaining the performance levels of using 32-bit gradient states.
arXiv Detail & Related papers (2021-10-06T15:43:20Z) - Post-Training Sparsity-Aware Quantization [2.2530496464901106]
Quantization is a technique used in deep neural networks (DNNs) to increase execution performance and hardware efficiency.
We propose a sparsity-aware quantization (SPARQ) method, in which the unstructured and dynamic activation sparsity is leveraged in different representation granularities.
SPARQ achieves minor accuracy degradation, 2x speedup over widely used hardware architectures, and a practical hardware implementation.
arXiv Detail & Related papers (2021-05-23T20:12:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.