FLEXTAF: Enhancing Table Reasoning with Flexible Tabular Formats
- URL: http://arxiv.org/abs/2408.08841v2
- Date: Tue, 27 Aug 2024 06:23:45 GMT
- Title: FLEXTAF: Enhancing Table Reasoning with Flexible Tabular Formats
- Authors: Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Baoxin Wang, Dayong Wu, Qingfu Zhu, Wanxiang Che,
- Abstract summary: We propose FLEXTAF-Single and FLEXTAF-Vote to enhance table reasoning performance by employing flexible formats.
Our experiments on WikiTableQuestions and TabFact reveal significant improvements, with average gains of 2.3% and 4.8%.
- Score: 48.47559543509975
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The table reasoning task aims to answer the question according to the given table. Currently, using Large Language Models (LLMs) is the predominant method for table reasoning. Most existing methods employ a fixed tabular format to represent the table, which could limit the performance. Given that each instance requires different capabilities and models possess varying abilities, we assert that different instances and models suit different tabular formats. We prove the aforementioned claim through quantitative analysis of experimental results, where different instances and models achieve different performances using various tabular formats. Building on this discussion, we propose FLEXTAF-Single and FLEXTAF-Vote to enhance table reasoning performance by employing flexible tabular formats. Specifically, (i) FLEXTAF-Single trains a classifier to predict the most suitable tabular format based on the instance and the LLM. (ii) FLEXTAF-Vote integrates the results across different formats. Our experiments on WikiTableQuestions and TabFact reveal significant improvements, with average gains of 2.3% and 4.8% compared to the best performance achieved using a fixed tabular format with greedy decoding and self-consistency decoding, thereby validating the effectiveness of our methods.
Related papers
- ALTER: Augmentation for Large-Table-Based Reasoning [5.164923314261229]
ALTER(Augmentation for Large-Table-Based Reasoning) is a framework designed to harness the latent augmentation potential in both free-form natural language (NL) questions.
By utilizing only a small subset of relevant data from the table, ALTER achieves outstanding performance on table-based reasoning benchmarks.
arXiv Detail & Related papers (2024-07-03T12:34:45Z) - LaTable: Towards Large Tabular Models [63.995130144110156]
Tabular generative foundation models are hard to build due to the heterogeneous feature spaces of different datasets.
LaTable is a novel diffusion model that addresses these challenges and can be trained across different datasets.
We find that LaTable outperforms baselines on in-distribution generation, and that finetuning LaTable can generate out-of-distribution datasets better with fewer samples.
arXiv Detail & Related papers (2024-06-25T16:03:50Z) - TDeLTA: A Light-weight and Robust Table Detection Method based on
Learning Text Arrangement [34.73880086005418]
We propose a novel, light-weighted and robust Table Detection method based on Learning Text Arrangement, namely TDeLTA.
To locate the tables precisely, we design a text-classification task, classifying the text blocks into 4 categories according to their semantic roles in the tables.
Compared to several state-of-the-art methods, TDeLTA achieves competitive results with only 3.1M model parameters on the large-scale public datasets.
arXiv Detail & Related papers (2023-12-18T09:18:43Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
We conduct parameter-efficient fine-tuning on the LLaMA2 model.
Our approach involves injecting reasoning information into the input by emphasizing table-specific row data.
On both the FetaQA and QTSumm datasets, our approach achieved state-of-the-art results.
arXiv Detail & Related papers (2023-11-15T12:02:52Z) - UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model
in Data Science [16.384705926693073]
This study seeks to extend the power of pretraining methodologies to facilitate the prediction over tables in data science.
We introduce UniTabE, a method designed to process tables in a uniform manner, devoid of constraints imposed by specific table structures.
In order to implement the pretraining phase, we curated an expansive dataset comprising approximately 13B samples, meticulously gathered from the Kaggle platform.
arXiv Detail & Related papers (2023-07-18T13:28:31Z) - SEMv2: Table Separation Line Detection Based on Instance Segmentation [96.36188168694781]
We propose an accurate table structure recognizer, termed SEMv2 (SEM: Split, Embed and Merge)
We address the table separation line instance-level discrimination problem and introduce a table separation line detection strategy based on conditional convolution.
To comprehensively evaluate the SEMv2, we also present a more challenging dataset for table structure recognition, dubbed iFLYTAB.
arXiv Detail & Related papers (2023-03-08T05:15:01Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
We focus on the task of table retrieval, and ask: "is table-specific model design necessary for table retrieval?"
Based on an analysis on a table-based portion of the Natural Questions dataset (NQ-table), we find that structure plays a negligible role in more than 70% of the cases.
We then experiment with three modules to explicitly encode table structures, namely auxiliary row/column embeddings, hard attention masks, and soft relation-based attention biases.
None of these yielded significant improvements, suggesting that table-specific model design may not be necessary for table retrieval.
arXiv Detail & Related papers (2022-05-19T20:35:23Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.