PATopics: An automatic framework to extract useful information from pharmaceutical patents documents
- URL: http://arxiv.org/abs/2408.08905v1
- Date: Mon, 12 Aug 2024 19:18:51 GMT
- Title: PATopics: An automatic framework to extract useful information from pharmaceutical patents documents
- Authors: Pablo Cecilio, Antônio Perreira, Juliana Santos Rosa Viegas, Washington Cunha, Felipe Viegas, Elisa Tuler, Fabiana Testa Moura de Carvalho Vicentini, Leonardo Rocha,
- Abstract summary: PATopics is a framework specially designed to extract relevant information for Pharmaceutical patents.
We extensively analyzed the framework using 4,832 pharmaceutical patents concerning 809 molecules patented by 478 companies.
- Score: 4.340983107526238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pharmaceutical patents play an important role by protecting the innovation from copies but also drive researchers to innovate, create new products, and promote disruptive innovations focusing on collective health. The study of patent management usually refers to an exhaustive manual search. This happens, because patent documents are complex with a lot of details regarding the claims and methodology/results explanation of the invention. To mitigate the manual search, we proposed PATopics, a framework specially designed to extract relevant information for Pharmaceutical patents. PATopics is composed of four building blocks that extract textual information from the patents, build relevant topics that are capable of summarizing the patents, correlate these topics with useful patent characteristics and then, summarize the information in a friendly web interface to final users. The general contributions of PATopics are its ability to centralize patents and to manage patents into groups based on their similarities. We extensively analyzed the framework using 4,832 pharmaceutical patents concerning 809 molecules patented by 478 companies. In our analysis, we evaluate the use of the framework considering the demands of three user profiles -- researchers, chemists, and companies. We also designed four real-world use cases to evaluate the framework's applicability. Our analysis showed how practical and helpful PATopics are in the pharmaceutical scenario.
Related papers
- Pap2Pat: Towards Automated Paper-to-Patent Drafting using Chunk-based Outline-guided Generation [13.242188189150987]
We present PAP2PAT, a new challenging benchmark of 1.8k patent-paper pairs with document outlines.
Our experiments with current open-weight LLMs and outline-guided generation show that they can effectively use information from the paper but struggle with repetitions, likely due to the inherent repetitiveness of patent language.
arXiv Detail & Related papers (2024-10-09T15:52:48Z) - A Comprehensive Survey on AI-based Methods for Patents [14.090575139188422]
AI-based tools present opportunities to streamline and enhance important tasks in the patent cycle.
This interdisciplinary survey aims to serve as a resource for researchers and practitioners working at the intersection of AI and patent analysis.
arXiv Detail & Related papers (2024-04-02T20:44:06Z) - Natural Language Processing in Patents: A Survey [0.0]
Patents, encapsulating crucial technical and legal information, present a rich domain for natural language processing (NLP) applications.
As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks.
This paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently.
arXiv Detail & Related papers (2024-03-06T23:17:16Z) - PaECTER: Patent-level Representation Learning using Citation-informed
Transformers [0.16785092703248325]
PaECTER is a publicly available, open-source document-level encoder specific for patents.
We fine-tune BERT for Patents with examiner-added citation information to generate numerical representations for patent documents.
PaECTER performs better in similarity tasks than current state-of-the-art models used in the patent domain.
arXiv Detail & Related papers (2024-02-29T18:09:03Z) - Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case
Study in Medicine [89.46836590149883]
We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training.
We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks.
With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite.
arXiv Detail & Related papers (2023-11-28T03:16:12Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
State-of-the-art methods for multi-label patent classification rely on deep opaque neural networks (DNNs)
We propose a novel deep explainable patent classification framework by introducing layer-wise relevance propagation (LRP)
Considering the relevance score, we then generate explanations by visualizing relevant words for the predicted patent class.
arXiv Detail & Related papers (2023-10-31T14:11:37Z) - Trustworthy, responsible, ethical AI in manufacturing and supply chains:
synthesis and emerging research questions [59.34177693293227]
We explore the applicability of responsible, ethical, and trustworthy AI within the context of manufacturing.
We then use a broadened adaptation of a machine learning lifecycle to discuss, through the use of illustrative examples, how each step may result in a given AI trustworthiness concern.
arXiv Detail & Related papers (2023-05-19T10:43:06Z) - DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4 [80.36535668574804]
We develop a novel GPT4-enabled de-identification framework (DeID-GPT")
Our developed DeID-GPT showed the highest accuracy and remarkable reliability in masking private information from the unstructured medical text.
This study is one of the earliest to utilize ChatGPT and GPT-4 for medical text data processing and de-identification.
arXiv Detail & Related papers (2023-03-20T11:34:37Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and
Multi-Purpose Corpus of Patent Applications [8.110699646062384]
We introduce the Harvard USPTO Patent dataset (HUPD)
With more than 4.5 million patent documents, HUPD is two to three times larger than comparable corpora.
By providing each application's metadata along with all of its text fields, the dataset enables researchers to perform new sets of NLP tasks.
arXiv Detail & Related papers (2022-07-08T17:57:15Z) - CREATe: Clinical Report Extraction and Annotation Technology [53.731999072534876]
Clinical case reports are written descriptions of the unique aspects of a particular clinical case.
There has been no attempt to develop an end-to-end system to annotate, index, or otherwise curate these reports.
We propose a novel computational resource platform, CREATe, for extracting, indexing, and querying the contents of clinical case reports.
arXiv Detail & Related papers (2021-02-28T16:50:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.