Bundle Recommendation with Item-level Causation-enhanced Multi-view Learning
- URL: http://arxiv.org/abs/2408.08906v1
- Date: Tue, 13 Aug 2024 07:05:27 GMT
- Title: Bundle Recommendation with Item-level Causation-enhanced Multi-view Learning
- Authors: Huy-Son Nguyen, Tuan-Nghia Bui, Long-Hai Nguyen, Hoang Manh-Hung, Cam-Van Thi Nguyen, Hoang-Quynh Le, Duc-Trong Le,
- Abstract summary: We present BunCa, a novel bundle recommendation approach employing item-level causation-enhanced multi-view learning.
BunCa provides comprehensive representations of users and bundles through two views: the Coherent View and the Cohesive View.
Experiments with BunCa on three benchmark datasets demonstrate the effectiveness of this novel research.
- Score: 1.901404011684453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bundle recommendation aims to enhance business profitability and user convenience by suggesting a set of interconnected items. In real-world scenarios, leveraging the impact of asymmetric item affiliations is crucial for effective bundle modeling and understanding user preferences. To address this, we present BunCa, a novel bundle recommendation approach employing item-level causation-enhanced multi-view learning. BunCa provides comprehensive representations of users and bundles through two views: the Coherent View, leveraging the Multi-Prospect Causation Network for causation-sensitive relations among items, and the Cohesive View, employing LightGCN for information propagation among users and bundles. Modeling user preferences and bundle construction combined from both views ensures rigorous cohesion in direct user-bundle interactions through the Cohesive View and captures explicit intents through the Coherent View. Simultaneously, the integration of concrete and discrete contrastive learning optimizes the consistency and self-discrimination of multi-view representations. Extensive experiments with BunCa on three benchmark datasets demonstrate the effectiveness of this novel research and validate our hypothesis.
Related papers
- Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCL aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.
We introduce a multi-level vector quantizer in an end-to-end manner to quantize user and item representations into discrete codes.
For neighborhood structure, we propose virtual neighbor augmentation by treating discrete codes as virtual neighbors.
Regarding semantic relevance, we identify similar users/items based on shared discrete codes and interaction targets to generate the semantically relevant view.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - Knowledge-Aware Multi-Intent Contrastive Learning for Multi-Behavior Recommendation [6.522900133742931]
Multi-behavioral recommendation provides users with more accurate choices based on diverse behaviors, such as view, add to cart, and purchase.
We propose a novel model: Knowledge-Aware Multi-Intent Contrastive Learning (KAMCL) model.
This model uses relationships in the knowledge graph to construct intents, aiming to mine the connections between users' multi-behaviors from the perspective of intents to achieve more accurate recommendations.
arXiv Detail & Related papers (2024-04-18T08:39:52Z) - BiVRec: Bidirectional View-based Multimodal Sequential Recommendation [55.87443627659778]
We propose an innovative framework, BivRec, that jointly trains the recommendation tasks in both ID and multimodal views.
BivRec achieves state-of-the-art performance on five datasets and showcases various practical advantages.
arXiv Detail & Related papers (2024-02-27T09:10:41Z) - Hypergrah-Enhanced Dual Convolutional Network for Bundle Recommendation [10.08634397606628]
We develop a unified model for bundle recommendation, termed hypergraph-enhanced dual convolutional neural network (HED)
Our approach is characterized by two key aspects. Firstly, we construct a complete hypergraph to capture interaction dynamics among users, items, and bundles. Secondly, we incorporate U-B interaction information to enhance the information representation derived from users and bundle embedding vectors.
arXiv Detail & Related papers (2023-12-18T08:35:10Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning [7.630965478083513]
We propose a deep fusion network to fuse view-specific representations into the view-common representation.
We also design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation.
In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors.
arXiv Detail & Related papers (2022-12-28T07:21:05Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF) is a new model for learning informative representations of users and items from interaction data.
By modeling a distribution over intents for each user-item interaction, we iteratively refine the intent-aware interaction graphs and representations.
DGCF achieves significant improvements over several state-of-the-art models like NGCF, DisenGCN, and MacridVAE.
arXiv Detail & Related papers (2020-07-03T15:37:25Z) - Bundle Recommendation with Graph Convolutional Networks [71.95344006365914]
Existing solutions integrate user-item interaction modeling into bundle recommendation by sharing model parameters or learning in a multi-task manner.
We propose a graph neural network model named BGCN (short for textittextBFBundle textBFGraph textBFConvolutional textBFNetwork) for bundle recommendation.
arXiv Detail & Related papers (2020-05-07T13:48:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.