Thin-Plate Spline-based Interpolation for Animation Line Inbetweening
- URL: http://arxiv.org/abs/2408.09131v1
- Date: Sat, 17 Aug 2024 08:05:31 GMT
- Title: Thin-Plate Spline-based Interpolation for Animation Line Inbetweening
- Authors: Tianyi Zhu, Wei Shang, Dongwei Ren, Wangmeng Zuo,
- Abstract summary: Chamfer Distance (CD) is commonly adopted for evaluating inbetweening performance.
We propose a simple yet effective method for animation line inbetweening that adopts thin-plate spline-based transformation.
Our method outperforms existing approaches by delivering high-quality results with enhanced fluidity.
- Score: 54.69811179222127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Animation line inbetweening is a crucial step in animation production aimed at enhancing animation fluidity by predicting intermediate line arts between two key frames. However, existing methods face challenges in effectively addressing sparse pixels and significant motion in line art key frames. In literature, Chamfer Distance (CD) is commonly adopted for evaluating inbetweening performance. Despite achieving favorable CD values, existing methods often generate interpolated frames with line disconnections, especially for scenarios involving large motion. Motivated by this observation, we propose a simple yet effective interpolation method for animation line inbetweening that adopts thin-plate spline-based transformation to estimate coarse motion more accurately by modeling the keypoint correspondence between two key frames, particularly for large motion scenarios. Building upon the coarse estimation, a motion refine module is employed to further enhance motion details before final frame interpolation using a simple UNet model. Furthermore, to more accurately assess the performance of animation line inbetweening, we refine the CD metric and introduce a novel metric termed Weighted Chamfer Distance, which demonstrates a higher consistency with visual perception quality. Additionally, we incorporate Earth Mover's Distance and conduct user study to provide a more comprehensive evaluation. Our method outperforms existing approaches by delivering high-quality interpolation results with enhanced fluidity. The code is available at \url{https://github.com/Tian-one/tps-inbetween}.
Related papers
- Motion-aware Latent Diffusion Models for Video Frame Interpolation [51.78737270917301]
Motion estimation between neighboring frames plays a crucial role in avoiding motion ambiguity.
We propose a novel diffusion framework, motion-aware latent diffusion models (MADiff)
Our method achieves state-of-the-art performance significantly outperforming existing approaches.
arXiv Detail & Related papers (2024-04-21T05:09:56Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
We introduce a Motion-Aware Video Frame Interpolation (MA-VFI) network, which directly estimates intermediate optical flow from consecutive frames.
It not only extracts global semantic relationships and spatial details from input frames with different receptive fields, but also effectively reduces the required computational cost and complexity.
arXiv Detail & Related papers (2024-02-05T11:00:14Z) - Video Frame Interpolation with Densely Queried Bilateral Correlation [52.823751291070906]
Video Frame Interpolation (VFI) aims to synthesize non-existent intermediate frames between existent frames.
Flow-based VFI algorithms estimate intermediate motion fields to warp the existent frames.
We propose Densely Queried Bilateral Correlation (DQBC) that gets rid of the receptive field dependency problem.
arXiv Detail & Related papers (2023-04-26T14:45:09Z) - Continuous Intermediate Token Learning with Implicit Motion Manifold for
Keyframe Based Motion Interpolation [20.314332409748637]
We propose a novel framework to formulate latent motion with precision-based constraints.
Our proposed method demonstrates both superior datasets accuracy and high visual similarity to ground truth motions.
arXiv Detail & Related papers (2023-03-27T05:53:01Z) - Enhanced Bi-directional Motion Estimation for Video Frame Interpolation [0.05541644538483946]
We present a novel yet effective algorithm for motion-based video frame estimation.
Our method achieves excellent performance on a broad range of video frame benchmarks.
arXiv Detail & Related papers (2022-06-17T06:08:43Z) - Long-term Video Frame Interpolation via Feature Propagation [95.18170372022703]
Video frame (VFI) works generally predict intermediate frame(s) by first estimating the motion between inputs and then warping the inputs to the target time with the estimated motion.
This approach is not optimal when the temporal distance between the input sequence increases.
We propose a propagation network (PNet) by extending the classic feature-level forecasting with a novel motion-to-feature approach.
arXiv Detail & Related papers (2022-03-29T10:47:06Z) - All at Once: Temporally Adaptive Multi-Frame Interpolation with Advanced
Motion Modeling [52.425236515695914]
State-of-the-art methods are iterative solutions interpolating one frame at the time.
This work introduces a true multi-frame interpolator.
It utilizes a pyramidal style network in the temporal domain to complete the multi-frame task in one-shot.
arXiv Detail & Related papers (2020-07-23T02:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.