Realistic Extreme Image Rescaling via Generative Latent Space Learning
- URL: http://arxiv.org/abs/2408.09151v1
- Date: Sat, 17 Aug 2024 09:51:42 GMT
- Title: Realistic Extreme Image Rescaling via Generative Latent Space Learning
- Authors: Ce Wang, Wanjie Sun, Zhenzhong Chen,
- Abstract summary: We propose a novel framework called Latent Space Based Image Rescaling (LSBIR) for extreme image rescaling tasks.
LSBIR effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model to generate realistic HR images.
In the first stage, a pseudo-invertible encoder-decoder models the bidirectional mapping between the latent features of the HR image and the target-sized LR image.
In the second stage, the reconstructed features from the first stage are refined by a pre-trained diffusion model to generate more faithful and visually pleasing details.
- Score: 51.85790402171696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image rescaling aims to learn the optimal downscaled low-resolution (LR) image that can be accurately reconstructed to its original high-resolution (HR) counterpart. This process is crucial for efficient image processing and storage, especially in the era of ultra-high definition media. However, extreme downscaling factors pose significant challenges due to the highly ill-posed nature of the inverse upscaling process, causing existing methods to struggle in generating semantically plausible structures and perceptually rich textures. In this work, we propose a novel framework called Latent Space Based Image Rescaling (LSBIR) for extreme image rescaling tasks. LSBIR effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model to generate realistic HR images. The rescaling is performed in the latent space of a pre-trained image encoder and decoder, which offers better perceptual reconstruction quality due to its stronger sparsity and richer semantics. LSBIR adopts a two-stage training strategy. In the first stage, a pseudo-invertible encoder-decoder models the bidirectional mapping between the latent features of the HR image and the target-sized LR image. In the second stage, the reconstructed features from the first stage are refined by a pre-trained diffusion model to generate more faithful and visually pleasing details. Extensive experiments demonstrate the superiority of LSBIR over previous methods in both quantitative and qualitative evaluations. The code will be available at: https://github.com/wwangcece/LSBIR.
Related papers
- Super-Resolution through StyleGAN Regularized Latent Search: A
Realism-Fidelity Trade-off [3.212648064850423]
This paper addresses the problem of constructing a highly resolved (HR) image from a low resolved (LR) one.
Recent unsupervised approaches search the latent space of a StyleGAN pre-trained on HR images, for the image that best downscales to the input LR image.
We introduce a new regularizer to constrain the search in the latent space, ensuring that the inverted code lies in the original image manifold.
arXiv Detail & Related papers (2023-11-28T16:27:24Z) - Self-Asymmetric Invertible Network for Compression-Aware Image Rescaling [6.861753163565238]
In real-world applications, most images are compressed for transmission.
We propose the Self-Asymmetric Invertible Network (SAIN) for compression-aware image rescaling.
arXiv Detail & Related papers (2023-03-04T08:33:46Z) - Enhancing Image Rescaling using Dual Latent Variables in Invertible
Neural Network [42.18106162158025]
A new downscaling latent variable is introduced to model variations in the image downscaling process.
It can improve image upscaling accuracy consistently without sacrificing image quality in downscaled LR images.
It is also shown to be effective in enhancing other INN-based models for image restoration applications like image hiding.
arXiv Detail & Related papers (2022-07-24T23:12:51Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image.
Previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image.
We propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image.
arXiv Detail & Related papers (2022-02-12T15:37:13Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Exploiting Deep Generative Prior for Versatile Image Restoration and
Manipulation [181.08127307338654]
This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images.
The deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images.
arXiv Detail & Related papers (2020-03-30T17:45:07Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.