ELASTIC: Efficient Linear Attention for Sequential Interest Compression
- URL: http://arxiv.org/abs/2408.09380v3
- Date: Wed, 6 Nov 2024 02:26:07 GMT
- Title: ELASTIC: Efficient Linear Attention for Sequential Interest Compression
- Authors: Jiaxin Deng, Shiyao Wang, Song Lu, Yinfeng Li, Xinchen Luo, Yuanjun Liu, Peixing Xu, Guorui Zhou,
- Abstract summary: State-of-the-art sequential recommendation models heavily rely on transformer's attention mechanism.
We propose ELASTIC, an Efficient Linear Attention for SequenTial Interest Compression.
We conduct extensive experiments on various public datasets and compare it with several strong sequential recommenders.
- Score: 5.689306819772134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art sequential recommendation models heavily rely on transformer's attention mechanism. However, the quadratic computational and memory complexities of self attention have limited its scalability for modeling users' long range behaviour sequences. To address this problem, we propose ELASTIC, an Efficient Linear Attention for SequenTial Interest Compression, requiring only linear time complexity and decoupling model capacity from computational cost. Specifically, ELASTIC introduces a fixed length interest experts with linear dispatcher attention mechanism which compresses the long-term behaviour sequences to a significantly more compact representation which reduces up to 90% GPU memory usage with x2.7 inference speed up. The proposed linear dispatcher attention mechanism significantly reduces the quadratic complexity and makes the model feasible for adequately modeling extremely long sequences. Moreover, in order to retain the capacity for modeling various user interests, ELASTIC initializes a vast learnable interest memory bank and sparsely retrieves compressed user's interests from the memory with a negligible computational overhead. The proposed interest memory retrieval technique significantly expands the cardinality of available interest space while keeping the same computational cost, thereby striking a trade-off between recommendation accuracy and efficiency. To validate the effectiveness of our proposed ELASTIC, we conduct extensive experiments on various public datasets and compare it with several strong sequential recommenders. Experimental results demonstrate that ELASTIC consistently outperforms baselines by a significant margin and also highlight the computational efficiency of ELASTIC when modeling long sequences. We will make our implementation code publicly available.
Related papers
- Faster Diffusion Action Segmentation [9.868244939496678]
Temporal Action Classification (TAS) is an essential task in video analysis, aiming to segment and classify continuous frames into distinct action segments.
Recent advances in diffusion models have demonstrated substantial success in TAS tasks due to their stable training process and high-quality generation capabilities.
We propose EffiDiffAct, an efficient and high-performance TAS algorithm.
arXiv Detail & Related papers (2024-08-04T13:23:18Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
We propose CHELA, which replaces state space models with short-long convolutions and implements linear attention in a divide-and-conquer manner.
Our experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-06-12T12:12:38Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
Transformer-based models have emerged as one of the most widely used architectures for natural language processing.
These huge models are memory hungry and incur significant inference latency even on cutting edge AI-accelerators.
We propose LeanAttention, a scalable technique of computing self-attention for the token-generation phase.
arXiv Detail & Related papers (2024-05-17T00:52:39Z) - Decreasing the Computing Time of Bayesian Optimization using
Generalizable Memory Pruning [56.334116591082896]
We show a wrapper of memory pruning and bounded optimization capable of being used with any surrogate model and acquisition function.
Running BO on high-dimensional or massive data sets becomes intractable due to this time complexity.
All model implementations are run on the MIT Supercloud state-of-the-art computing hardware.
arXiv Detail & Related papers (2023-09-08T14:05:56Z) - DBA: Efficient Transformer with Dynamic Bilinear Low-Rank Attention [53.02648818164273]
We present an efficient yet effective attention mechanism, namely the Dynamic Bilinear Low-Rank Attention (DBA)
DBA compresses the sequence length by input-sensitive dynamic projection matrices and achieves linear time and space complexity.
Experiments over tasks with diverse sequence length conditions show that DBA achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-11-24T03:06:36Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
We propose Linformer and Informer to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection.
Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention.
arXiv Detail & Related papers (2021-12-10T06:58:05Z) - Adaptive Multi-Resolution Attention with Linear Complexity [18.64163036371161]
We propose a novel structure named Adaptive Multi-Resolution Attention (AdaMRA) for short.
We leverage a multi-resolution multi-head attention mechanism, enabling attention heads to capture long-range contextual information in a coarse-to-fine fashion.
To facilitate AdaMRA utilization by the scientific community, the code implementation will be made publicly available.
arXiv Detail & Related papers (2021-08-10T23:17:16Z) - SAC: Accelerating and Structuring Self-Attention via Sparse Adaptive
Connection [51.376723069962]
We present a method for accelerating and structuring self-attentions: Sparse Adaptive Connection.
In SAC, we regard the input sequence as a graph and attention operations are performed between linked nodes.
We show that SAC is competitive with state-of-the-art models while significantly reducing memory cost.
arXiv Detail & Related papers (2020-03-22T07:58:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.