Hindi-BEIR : A Large Scale Retrieval Benchmark in Hindi
- URL: http://arxiv.org/abs/2408.09437v1
- Date: Sun, 18 Aug 2024 10:55:04 GMT
- Title: Hindi-BEIR : A Large Scale Retrieval Benchmark in Hindi
- Authors: Arkadeep Acharya, Rudra Murthy, Vishwajeet Kumar, Jaydeep Sen,
- Abstract summary: Despite ongoing research, there is a lack of comprehensive benchmark for evaluating retrieval models in Hindi.
We introduce the Hindi version of the BEIR benchmark, which includes a subset of English BEIR datasets translated to Hindi, existing Hindi retrieval datasets, and synthetically created datasets for retrieval.
We evaluate state-of-the-art multilingual retrieval models on this benchmark to identify task and domain-specific challenges and their impact on retrieval performance.
- Score: 8.21020989074456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the large number of Hindi speakers worldwide, there is a pressing need for robust and efficient information retrieval systems for Hindi. Despite ongoing research, there is a lack of comprehensive benchmark for evaluating retrieval models in Hindi. To address this gap, we introduce the Hindi version of the BEIR benchmark, which includes a subset of English BEIR datasets translated to Hindi, existing Hindi retrieval datasets, and synthetically created datasets for retrieval. The benchmark is comprised of $15$ datasets spanning across $8$ distinct tasks. We evaluate state-of-the-art multilingual retrieval models on this benchmark to identify task and domain-specific challenges and their impact on retrieval performance. By releasing this benchmark and a set of relevant baselines, we enable researchers to understand the limitations and capabilities of current Hindi retrieval models, promoting advancements in this critical area. The datasets from Hindi-BEIR are publicly available.
Related papers
- Benchmarking and Building Zero-Shot Hindi Retrieval Model with Hindi-BEIR and NLLB-E5 [8.21020989074456]
We introduce the Hindi-BEIR benchmark, comprising 15 datasets across seven distinct tasks.
We evaluate state-of-the-art multilingual retrieval models on the Hindi-BEIR benchmark, identifying task and domain-specific challenges.
We introduce NLLB-E5, a multilingual retrieval model that leverages a zero-shot approach to support Hindi without the need for Hindi training data.
arXiv Detail & Related papers (2024-09-09T07:57:43Z) - Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
This research investigates biases in text-to-image (TTI) models for the Indic languages widely spoken across India.
It evaluates and compares the generative performance and cultural relevance of leading TTI models in these languages against their performance in English.
arXiv Detail & Related papers (2024-08-01T04:56:13Z) - Open the Data! Chuvash Datasets [50.59120569845975]
We introduce four comprehensive datasets for the Chuvash language.
These datasets include a monolingual dataset, a parallel dataset with Russian, a parallel dataset with English, and an audio dataset.
arXiv Detail & Related papers (2024-05-31T07:51:19Z) - Suvach -- Generated Hindi QA benchmark [0.0]
This paper proposes a new benchmark specifically designed for evaluating Hindi EQA models.
This method leverages large language models (LLMs) to generate a high-quality dataset in an extractive setting.
arXiv Detail & Related papers (2024-04-30T04:19:17Z) - IndiBias: A Benchmark Dataset to Measure Social Biases in Language Models for Indian Context [32.48196952339581]
We introduce IndiBias, a benchmark dataset for evaluating social biases in the Indian context.
The included bias dimensions encompass gender, religion, caste, age, region, physical appearance, and occupation.
Our dataset contains 800 sentence pairs and 300s for bias measurement across different demographics.
arXiv Detail & Related papers (2024-03-29T12:32:06Z) - Breaking Language Barriers: A Question Answering Dataset for Hindi and
Marathi [1.03590082373586]
This paper focuses on developing a Question Answering dataset for two such languages- Hindi and Marathi.
Despite Hindi being the 3rd most spoken language worldwide, and Marathi being the 11th most spoken language globally, both languages face limited resources for building efficient Question Answering systems.
We release the largest Question-Answering dataset available for these languages, with each dataset containing 28,000 samples.
arXiv Detail & Related papers (2023-08-19T00:39:21Z) - XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
Data scarcity is a crucial issue for the development of highly multilingual NLP systems.
We propose XTREME-UP, a benchmark defined by its focus on the scarce-data scenario rather than zero-shot.
XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies.
arXiv Detail & Related papers (2023-05-19T18:00:03Z) - PMIndiaSum: Multilingual and Cross-lingual Headline Summarization for
Languages in India [33.31556860332746]
PMIndiaSum is a multilingual and massively parallel summarization corpus focused on languages in India.
Our corpus provides a training and testing ground for four language families, 14 languages, and the largest to date with 196 language pairs.
arXiv Detail & Related papers (2023-05-15T17:41:15Z) - Evaluating Embedding APIs for Information Retrieval [51.24236853841468]
We evaluate the capabilities of existing semantic embedding APIs on domain generalization and multilingual retrieval.
We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective in English.
For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best, albeit at a higher cost.
arXiv Detail & Related papers (2023-05-10T16:40:52Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
We introduce the Image-Grounded Language Understanding Evaluation benchmark.
IGLUE brings together visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages.
We find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks.
arXiv Detail & Related papers (2022-01-27T18:53:22Z) - Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval [51.004601358498135]
Mr. TyDi is a benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages.
The goal of this resource is to spur research in dense retrieval techniques in non-English languages.
arXiv Detail & Related papers (2021-08-19T16:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.