Seamless Integration: Sampling Strategies in Federated Learning Systems
- URL: http://arxiv.org/abs/2408.09545v2
- Date: Tue, 20 Aug 2024 09:04:25 GMT
- Title: Seamless Integration: Sampling Strategies in Federated Learning Systems
- Authors: Tatjana Legler, Vinit Hegiste, Martin Ruskowski,
- Abstract summary: Federated Learning (FL) represents a paradigm shift in the field of machine learning.
The seamless integration of new clients is imperative to sustain and enhance the performance of FL systems.
This paper outlines strategies for effective client selection strategies and solutions for ensuring system scalability and stability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated Learning (FL) represents a paradigm shift in the field of machine learning, offering an approach for a decentralized training of models across a multitude of devices while maintaining the privacy of local data. However, the dynamic nature of FL systems, characterized by the ongoing incorporation of new clients with potentially diverse data distributions and computational capabilities, poses a significant challenge to the stability and efficiency of these distributed learning networks. The seamless integration of new clients is imperative to sustain and enhance the performance and robustness of FL systems. This paper looks into the complexities of integrating new clients into existing FL systems and explores how data heterogeneity and varying data distribution (not independent and identically distributed) among them can affect model training, system efficiency, scalability and stability. Despite these challenges, the integration of new clients into FL systems presents opportunities to enhance data diversity, improve learning performance, and leverage distributed computational power. In contrast to other fields of application such as the distributed optimization of word predictions on Gboard (where federated learning once originated), there are usually only a few clients in the production environment, which is why information from each new client becomes all the more valuable. This paper outlines strategies for effective client selection strategies and solutions for ensuring system scalability and stability. Using the example of images from optical quality inspection, it offers insights into practical approaches. In conclusion, this paper proposes that addressing the challenges presented by new client integration is crucial to the advancement and efficiency of distributed learning networks, thus paving the way for the adoption of Federated Learning in production environments.
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Enhancing Data Provenance and Model Transparency in Federated Learning
Systems -- A Database Approach [1.2180726230978978]
Federated Learning (FL) presents a promising paradigm for training machine learning models across decentralized edge devices.
Ensuring the integrity and traceability of data across these distributed environments remains a critical challenge.
We propose one of the first approaches to enhance data provenance and model transparency in FL systems.
arXiv Detail & Related papers (2024-03-03T09:08:41Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Training Heterogeneous Client Models using Knowledge Distillation in
Serverless Federated Learning [0.5510212613486574]
Federated Learning (FL) is an emerging machine learning paradigm that enables the collaborative training of a shared global model across distributed clients.
Recent works on designing systems for efficient FL have shown that utilizing serverless computing technologies can enhance resource efficiency, reduce training costs, and alleviate the complex infrastructure management burden on data holders.
arXiv Detail & Related papers (2024-02-11T20:15:52Z) - Strategic Client Selection to Address Non-IIDness in HAPS-enabled FL
Networks [24.10349383347469]
This study introduces a client selection strategy tailored to address non-IIDness in client data distributions.
By strategically selecting clients whose data exhibit similar patterns for participation in FL training, our approach fosters a more uniform and representative data distribution.
Our simulations demonstrate that this targeted client selection methodology significantly reduces the training loss of FL models in HAPS networks.
arXiv Detail & Related papers (2024-01-10T18:22:00Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Federated quantization-based self-supervised learning scheme (Fed-QSSL) designed to address heterogeneity in FL systems.
Fed-QSSL deploys de-quantization, weighted aggregation and re-quantization, ultimately creating models personalized to both data distribution and specific infrastructure of each client's device.
arXiv Detail & Related papers (2023-12-20T19:11:19Z) - Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning [14.866327821524854]
HiCS-FL is a novel client selection method in which the server estimates statistical heterogeneity of a client's data using the client's update of the network's output layer.
In non-IID settings HiCS-FL achieves faster convergence than state-of-the-art FL client selection schemes.
arXiv Detail & Related papers (2023-09-30T00:29:30Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.