Security Concerns in Quantum Machine Learning as a Service
- URL: http://arxiv.org/abs/2408.09562v1
- Date: Sun, 18 Aug 2024 18:21:24 GMT
- Title: Security Concerns in Quantum Machine Learning as a Service
- Authors: Satwik Kundu, Swaroop Ghosh,
- Abstract summary: Quantum machine learning (QML) is a category of algorithms that employ variational quantum circuits (VQCs) to tackle machine learning tasks.
Recent discoveries have shown that QML models can effectively generalize from limited training data samples.
QML represents a hybrid model that utilizes both classical and quantum computing resources.
- Score: 2.348041867134616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum machine learning (QML) is a category of algorithms that employ variational quantum circuits (VQCs) to tackle machine learning tasks. Recent discoveries have shown that QML models can effectively generalize from limited training data samples. This capability has sparked increased interest in deploying these models to address practical, real-world challenges, resulting in the emergence of Quantum Machine Learning as a Service (QMLaaS). QMLaaS represents a hybrid model that utilizes both classical and quantum computing resources. Classical computers play a crucial role in this setup, handling initial pre-processing and subsequent post-processing of data to compensate for the current limitations of quantum hardware. Since this is a new area, very little work exists to paint the whole picture of QMLaaS in the context of known security threats in the domain of classical and quantum machine learning. This SoK paper is aimed to bridge this gap by outlining the complete QMLaaS workflow, which encompasses both the training and inference phases and highlighting significant security concerns involving untrusted classical or quantum providers. QML models contain several sensitive assets, such as the model architecture, training/testing data, encoding techniques, and trained parameters. Unauthorized access to these components could compromise the model's integrity and lead to intellectual property (IP) theft. We pinpoint the critical security issues that must be considered to pave the way for a secure QMLaaS deployment.
Related papers
- QML-IDS: Quantum Machine Learning Intrusion Detection System [1.2016264781280588]
We present QML-IDS, a novel Intrusion Detection System that combines quantum and classical computing techniques.
QML-IDS employs Quantum Machine Learning(QML) methodologies to analyze network patterns and detect attack activities.
We show that QML-IDS is effective at attack detection and performs well in binary and multiclass classification tasks.
arXiv Detail & Related papers (2024-10-07T13:07:41Z) - Predominant Aspects on Security for Quantum Machine Learning: Literature Review [0.0]
Quantum Machine Learning (QML) has emerged as a promising intersection of quantum computing and classical machine learning.
This paper discusses the question which security concerns and strengths are connected to QML by means of a systematic literature review.
arXiv Detail & Related papers (2024-01-15T15:35:43Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies.
QFL can be deployed over both classical and quantum communication networks.
arXiv Detail & Related papers (2023-10-23T02:56:00Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Case Study-Based Approach of Quantum Machine Learning in Cybersecurity:
Quantum Support Vector Machine for Malware Classification and Protection [8.34729912896717]
We design and develop QML-based ten learning modules covering various cybersecurity topics.
In this paper, we utilize quantum support vector machine (QSVM) for malware classification and protection.
We demonstrate our QSVM model and achieve an accuracy of 95% in malware classification and protection.
arXiv Detail & Related papers (2023-06-01T02:04:09Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Security Aspects of Quantum Machine Learning: Opportunities, Threats and
Defenses [5.444459446244819]
Quantum machine learning (QML) can exploit the high dimensional Hilbert space to learn richer representations from limited data.
We explore the possible future applications of QML in the hardware security domain.
We expose the security vulnerabilities of QML and emerging attack models, and corresponding countermeasures.
arXiv Detail & Related papers (2022-04-07T17:44:22Z) - Study of Feature Importance for Quantum Machine Learning Models [0.0]
Predictor importance is a crucial part of data preprocessing pipelines in classical and quantum machine learning (QML)
This work presents the first study of its kind in which feature importance for QML models has been explored and contrasted against their classical machine learning (CML) equivalents.
We developed a hybrid quantum-classical architecture where QML models are trained and feature importance values are calculated from classical algorithms on a real-world dataset.
arXiv Detail & Related papers (2022-02-18T15:21:47Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.