Meta-Learning on Augmented Gene Expression Profiles for Enhanced Lung Cancer Detection
- URL: http://arxiv.org/abs/2408.09635v1
- Date: Mon, 19 Aug 2024 01:39:12 GMT
- Title: Meta-Learning on Augmented Gene Expression Profiles for Enhanced Lung Cancer Detection
- Authors: Arya Hadizadeh Moghaddam, Mohsen Nayebi Kerdabadi, Cuncong Zhong, Zijun Yao,
- Abstract summary: We present a meta-learning-based approach for predicting lung cancer from gene expression profiles.
We employ four distinct datasets for the meta-learning tasks, where one as the target dataset and the rest as source datasets.
Results show the superior performance of meta-learning on augmented source data compared to the baselines trained on single datasets.
- Score: 3.7929238927240685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gene expression profiles obtained through DNA microarray have proven successful in providing critical information for cancer detection classifiers. However, the limited number of samples in these datasets poses a challenge to employ complex methodologies such as deep neural networks for sophisticated analysis. To address this "small data" dilemma, Meta-Learning has been introduced as a solution to enhance the optimization of machine learning models by utilizing similar datasets, thereby facilitating a quicker adaptation to target datasets without the requirement of sufficient samples. In this study, we present a meta-learning-based approach for predicting lung cancer from gene expression profiles. We apply this framework to well-established deep learning methodologies and employ four distinct datasets for the meta-learning tasks, where one as the target dataset and the rest as source datasets. Our approach is evaluated against both traditional and deep learning methodologies, and the results show the superior performance of meta-learning on augmented source data compared to the baselines trained on single datasets. Moreover, we conduct the comparative analysis between meta-learning and transfer learning methodologies to highlight the efficiency of the proposed approach in addressing the challenges associated with limited sample sizes. Finally, we incorporate the explainability study to illustrate the distinctiveness of decisions made by meta-learning.
Related papers
- A Comprehensive Survey on Data Augmentation [55.355273602421384]
Data augmentation is a technique that generates high-quality artificial data by manipulating existing data samples.
Existing literature surveys only focus on a certain type of specific modality data.
We propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities.
arXiv Detail & Related papers (2024-05-15T11:58:08Z) - Interpretable Deep Learning Methods for Multiview Learning [7.369639553849422]
iDeepViewLearn is a method for learning nonlinear relationships in data from multiple views.
Deep neural networks are used to learn view-independent low-dimensional embedding.
iDeepViewLearn is tested on simulated and two real-world data, including breast cancer-related gene expression and methylation data.
arXiv Detail & Related papers (2023-02-15T20:11:25Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - Graph Neural Networks for Breast Cancer Data Integration [0.0]
We propose a novel learning pipeline comprising three steps - the integration of cancer data modalities as graphs, followed by the application of Graph Neural Networks.
This project has the potential to improve cancer data understanding and encourages the transition of regular data sets to graph-shaped data.
arXiv Detail & Related papers (2022-11-28T17:10:19Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
We present a novel approach to extracting inductive biases from a set of related datasets.
We use functional Bayesian neural network inference, which views the prior as a process and performs inference in the function space.
Our approach can seamlessly acquire and represent complex prior knowledge by metalearning the score function of the data-generating process.
arXiv Detail & Related papers (2022-10-24T15:14:26Z) - CustOmics: A versatile deep-learning based strategy for multi-omics
integration [0.0]
This paper presents a novel strategy to build a customizable autoencoder model that adapts to the dataset used in the case of high-dimensional multi-source integration.
We will assess the impact of integration strategies on the latent representation and combine the best strategies to propose a new method, CustOmics.
arXiv Detail & Related papers (2022-09-12T14:20:29Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - EPICURE Ensemble Pretrained Models for Extracting Cancer Mutations from
Literature [12.620782629498814]
EPICURE is an ensemble pre trained model equipped with a conditional random field pattern layer and a span prediction pattern layer to extract cancer mutations from text.
Experimental results on three benchmark datasets show competitive results compared to the baseline models.
arXiv Detail & Related papers (2021-06-11T09:08:15Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.