Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering
- URL: http://arxiv.org/abs/2408.09702v1
- Date: Mon, 19 Aug 2024 05:15:45 GMT
- Title: Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering
- Authors: Ruofan Liang, Zan Gojcic, Merlin Nimier-David, David Acuna, Nandita Vijaykumar, Sanja Fidler, Zian Wang,
- Abstract summary: correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials.
We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process.
Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes.
- Score: 56.68286440268329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
Related papers
- Relighting Scenes with Object Insertions in Neural Radiance Fields [24.18050535794117]
We propose a novel NeRF-based pipeline for inserting object NeRFs into scene NeRFs.
The proposed method achieves realistic relighting effects in extensive experimental evaluations.
arXiv Detail & Related papers (2024-06-21T00:58:58Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - Neural Radiance Transfer Fields for Relightable Novel-view Synthesis
with Global Illumination [63.992213016011235]
We propose a method for scene relighting under novel views by learning a neural precomputed radiance transfer function.
Our method can be solely supervised on a set of real images of the scene under a single unknown lighting condition.
Results show that the recovered disentanglement of scene parameters improves significantly over the current state of the art.
arXiv Detail & Related papers (2022-07-27T16:07:48Z) - PhotoScene: Photorealistic Material and Lighting Transfer for Indoor
Scenes [84.66946637534089]
PhotoScene is a framework that takes input image(s) of a scene and builds a photorealistic digital twin with high-quality materials and similar lighting.
We model scene materials using procedural material graphs; such graphs represent photorealistic and resolution-independent materials.
We evaluate our technique on objects and layout reconstructions from ScanNet, SUN RGB-D and stock photographs, and demonstrate that our method reconstructs high-quality, fully relightable 3D scenes.
arXiv Detail & Related papers (2022-07-02T06:52:44Z) - Object-Centric Neural Scene Rendering [19.687759175741824]
We present a method for composing photorealistic scenes from captured images of objects.
Our work builds upon neural radiance fields (NeRFs), which implicitly model the volumetric density and directionally-emitted radiance of a scene.
We learn object-centric neural scattering functions (OSFs), a representation that models per-object light transport implicitly using a lighting- and view-dependent neural network.
arXiv Detail & Related papers (2020-12-15T18:55:02Z) - Neural Reflectance Fields for Appearance Acquisition [61.542001266380375]
We present Neural Reflectance Fields, a novel deep scene representation that encodes volume density, normal and reflectance properties at any 3D point in a scene.
We combine this representation with a physically-based differentiable ray marching framework that can render images from a neural reflectance field under any viewpoint and light.
arXiv Detail & Related papers (2020-08-09T22:04:36Z) - Deep Reflectance Volumes: Relightable Reconstructions from Multi-View
Photometric Images [59.53382863519189]
We present a deep learning approach to reconstruct scene appearance from unstructured images captured under collocated point lighting.
At the heart of Deep Reflectance Volumes is a novel volumetric scene representation consisting of opacity, surface normal and reflectance voxel grids.
We show that our learned reflectance volumes are editable, allowing for modifying the materials of the captured scenes.
arXiv Detail & Related papers (2020-07-20T05:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.