$p$SVM: Soft-margin SVMs with $p$-norm Hinge Loss
- URL: http://arxiv.org/abs/2408.09908v2
- Date: Tue, 20 Aug 2024 12:00:00 GMT
- Title: $p$SVM: Soft-margin SVMs with $p$-norm Hinge Loss
- Authors: Haoxiang Sun,
- Abstract summary: Support Vector Machines (SVMs) based on hinge loss have been extensively discussed and applied to various binary classification tasks.
In this paper, we explore the properties, performance, and training algorithms of $p$SVMs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Support Vector Machines (SVMs) based on hinge loss have been extensively discussed and applied to various binary classification tasks. These SVMs achieve a balance between margin maximization and the minimization of slack due to outliers. Although many efforts have been dedicated to enhancing the performance of SVMs with hinge loss, studies on $p$SVMs, soft-margin SVMs with $p$-norm hinge loss, remain relatively scarce. In this paper, we explore the properties, performance, and training algorithms of $p$SVMs. We first derive the generalization bound of $p$SVMs, then formulate the dual optimization problem, comparing it with the traditional approach. Furthermore, we discuss a generalized version of the Sequential Minimal Optimization (SMO) algorithm, $p$SMO, to train our $p$SVM model. Comparative experiments on various datasets, including binary and multi-class classification tasks, demonstrate the effectiveness and advantages of our $p$SVM model and the $p$SMO method. Code is available at https://github.com/CoderBak/pSVM.
Related papers
- A Novel Loss Function-based Support Vector Machine for Binary Classification [3.773980481058198]
We propose a novel Slide loss function ($ell_s$) to construct the support vector machine classifier($ell_s$-SVM)
By introducing the concept of proximal stationary point, and utilizing the property of Lipschitz continuity, we derive the first-order optimality conditions for $ell_s$-SVM.
To efficiently handle $ell_s$-SVM, we devise a fast alternating direction method of multipliers with the working set.
arXiv Detail & Related papers (2024-03-25T11:42:01Z) - A Safe Screening Rule with Bi-level Optimization of $\nu$ Support Vector
Machine [15.096652880354199]
We propose a safe screening rule with bi-level optimization for $nu$-SVM.
Our SRBO-$nu$-SVM is strictly deduced by integrating the Karush-Kuhn-Tucker conditions.
We also develop an efficient dual coordinate descent method (DCDM) to further improve computational speed.
arXiv Detail & Related papers (2024-03-04T06:55:57Z) - Multi-class Support Vector Machine with Maximizing Minimum Margin [67.51047882637688]
Support Vector Machine (SVM) is a prominent machine learning technique widely applied in pattern recognition tasks.
We propose a novel method for multi-class SVM that incorporates pairwise class loss considerations and maximizes the minimum margin.
Empirical evaluations demonstrate the effectiveness and superiority of our proposed method over existing multi-classification methods.
arXiv Detail & Related papers (2023-12-11T18:09:55Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - Kernel Support Vector Machine Classifiers with the $\ell_0$-Norm Hinge
Loss [3.007949058551534]
Support Vector Machine (SVM) has been one of the most successful machine learning techniques for binary classification problems.
This paper is concentrated on vectors with hinge loss (referred as $ell$-KSVM), which is a composite function of hinge loss and $ell_$norm.
Experiments on the synthetic and real datasets are illuminated to show that $ell_$-KSVM can achieve comparable accuracy compared with the standard KSVM.
arXiv Detail & Related papers (2023-06-24T14:52:44Z) - High-Dimensional Penalized Bernstein Support Vector Machines [0.0]
Non-differentiability of the SVM hinge loss function can lead to computational difficulties in high dimensional settings.
We propose two efficient algorithms for computing the solution of the penalized BernSVM.
Our bound holds with high probability and achieves a rate of order $sqrtslog(p)/n$, where $s$ is the number of active features.
arXiv Detail & Related papers (2023-03-16T03:48:29Z) - Horizon-Free and Variance-Dependent Reinforcement Learning for Latent
Markov Decision Processes [62.90204655228324]
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight.
We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver.
arXiv Detail & Related papers (2022-10-20T21:32:01Z) - Handling Imbalanced Classification Problems With Support Vector Machines
via Evolutionary Bilevel Optimization [73.17488635491262]
Support vector machines (SVMs) are popular learning algorithms to deal with binary classification problems.
This article introduces EBCS-SVM: evolutionary bilevel cost-sensitive SVMs.
arXiv Detail & Related papers (2022-04-21T16:08:44Z) - Estimating Average Treatment Effects with Support Vector Machines [77.34726150561087]
Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature.
We adapt SVM as a kernel-based weighting procedure that minimizes the maximum mean discrepancy between the treatment and control groups.
We characterize the bias of causal effect estimation arising from this trade-off, connecting the proposed SVM procedure to the existing kernel balancing methods.
arXiv Detail & Related papers (2021-02-23T20:22:56Z) - Consistent Structured Prediction with Max-Min Margin Markov Networks [84.60515484036239]
Max-margin methods for binary classification have been extended to the structured prediction setting under the name of max-margin Markov networks ($M3N$)
We overcome such limitations by defining the learning problem in terms of a "max-min" margin formulation, naming the resulting method max-min margin Markov networks ($M4N$)
Experiments on multi-class classification, ordinal regression, sequence prediction and ranking demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2020-07-02T10:48:42Z) - A quantum extension of SVM-perf for training nonlinear SVMs in almost
linear time [0.2855485723554975]
We propose a quantum algorithm for training nonlinear support vector machines (SVM) for feature space learning.
Based on the classical SVM-perf algorithm of Joachims, our algorithm has a running time which scales linearly in the number of training examples.
arXiv Detail & Related papers (2020-06-18T06:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.