Parseval Convolution Operators and Neural Networks
- URL: http://arxiv.org/abs/2408.09981v1
- Date: Mon, 19 Aug 2024 13:31:16 GMT
- Title: Parseval Convolution Operators and Neural Networks
- Authors: Michael Unser, Stanislas Ducotterd,
- Abstract summary: We first identify the Parseval convolution operators as the class of energy-preserving filterbanks.
We then present a constructive approach for the design/specification of such filterbanks via the chaining of elementary Parseval modules.
We demonstrate the usage of those tools with the design of a CNN-based algorithm for the iterative reconstruction of biomedical images.
- Score: 16.78532039510369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We first establish a kernel theorem that characterizes all linear shift-invariant (LSI) operators acting on discrete multicomponent signals. This result naturally leads to the identification of the Parseval convolution operators as the class of energy-preserving filterbanks. We then present a constructive approach for the design/specification of such filterbanks via the chaining of elementary Parseval modules, each of which being parameterized by an orthogonal matrix or a 1-tight frame. Our analysis is complemented with explicit formulas for the Lipschitz constant of all the components of a convolutional neural network (CNN), which gives us a handle on their stability. Finally, we demonstrate the usage of those tools with the design of a CNN-based algorithm for the iterative reconstruction of biomedical images. Our algorithm falls within the plug-and-play framework for the resolution of inverse problems. It yields better-quality results than the sparsity-based methods used in compressed sensing, while offering essentially the same convergence and robustness guarantees.
Related papers
- Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Cyclic Block Coordinate Descent With Variance Reduction for Composite
Nonconvex Optimization [26.218670461973705]
We propose methods for solving problems coordinate non-asymptotic gradient norm guarantees.
Our results demonstrate the efficacy of the proposed cyclic-reduced scheme in training deep neural nets.
arXiv Detail & Related papers (2022-12-09T19:17:39Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Understanding the Covariance Structure of Convolutional Filters [86.0964031294896]
Recent ViT-inspired convolutional networks such as ConvMixer and ConvNeXt use large-kernel depthwise convolutions with notable structure.
We first observe that such learned filters have highly-structured covariance matrices, and we find that covariances calculated from small networks may be used to effectively initialize a variety of larger networks.
arXiv Detail & Related papers (2022-10-07T15:59:13Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - A research framework for writing differentiable PDE discretizations in
JAX [3.4389358108344257]
Differentiable simulators are an emerging concept with applications in several fields, from reinforcement learning to optimal control.
We propose a library of differentiable operators and discretizations, by representing operators as mappings between families of continuous functions, parametrized by finite vectors.
We demonstrate the approach on an acoustic optimization problem, where the Helmholtz equation is discretized using Fourier spectral methods, and differentiability is demonstrated using gradient descent to optimize the speed of sound of an acoustic lens.
arXiv Detail & Related papers (2021-11-09T15:58:44Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Convolutional Proximal Neural Networks and Plug-and-Play Algorithms [0.225596179391365]
In this paper, we introduce convolutional proximal neural networks (cPNNs)
For filters of full length, we propose a submanifold of the Stiefel manifold to train cPNNs.
Then, we investigate how scaled cPNNs with a prescribed Lipschitz constant can be used for denoising signals images.
arXiv Detail & Related papers (2020-11-04T13:32:46Z) - Self-grouping Convolutional Neural Networks [30.732298624941738]
We propose a novel method of designing self-grouping convolutional neural networks, called SG-CNN.
For each filter, we first evaluate the importance value of their input channels to identify the importance vectors.
Using the resulting emphdata-dependent centroids, we prune the less important connections, which implicitly minimizes the accuracy loss of the pruning.
arXiv Detail & Related papers (2020-09-29T06:24:32Z) - Deep neural networks for inverse problems with pseudodifferential
operators: an application to limited-angle tomography [0.4110409960377149]
We propose a novel convolutional neural network (CNN) designed for learning pseudodifferential operators ($Psi$DOs) in the context of linear inverse problems.
We show that, under rather general assumptions on the forward operator, the unfolded iterations of ISTA can be interpreted as the successive layers of a CNN.
In particular, we prove that, in the case of LA-CT, the operations of upscaling, downscaling and convolution, can be exactly determined by combining the convolutional nature of the limited angle X-ray transform and basic properties defining a wavelet system.
arXiv Detail & Related papers (2020-06-02T14:03:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.