Unlocking the Power of LSTM for Long Term Time Series Forecasting
- URL: http://arxiv.org/abs/2408.10006v1
- Date: Mon, 19 Aug 2024 13:59:26 GMT
- Title: Unlocking the Power of LSTM for Long Term Time Series Forecasting
- Authors: Yaxuan Kong, Zepu Wang, Yuqi Nie, Tian Zhou, Stefan Zohren, Yuxuan Liang, Peng Sun, Qingsong Wen,
- Abstract summary: We propose a simple yet efficient algorithm named P-sLSTM built upon sLSTM by incorporating patching and channel independence.
These modifications substantially enhance sLSTM's performance in TSF, achieving state-of-the-art results.
- Score: 27.245021350821638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional recurrent neural network architectures, such as long short-term memory neural networks (LSTM), have historically held a prominent role in time series forecasting (TSF) tasks. While the recently introduced sLSTM for Natural Language Processing (NLP) introduces exponential gating and memory mixing that are beneficial for long term sequential learning, its potential short memory issue is a barrier to applying sLSTM directly in TSF. To address this, we propose a simple yet efficient algorithm named P-sLSTM, which is built upon sLSTM by incorporating patching and channel independence. These modifications substantially enhance sLSTM's performance in TSF, achieving state-of-the-art results. Furthermore, we provide theoretical justifications for our design, and conduct extensive comparative and analytical experiments to fully validate the efficiency and superior performance of our model.
Related papers
- Beam Prediction based on Large Language Models [51.45077318268427]
Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss.
Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization.
In this letter, we use large language models (LLMs) to improve the robustness of beam prediction.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - Implementation Guidelines and Innovations in Quantum LSTM Networks [2.938337278931738]
This paper presents a theoretical analysis and an implementation plan for a Quantum LSTM model, which seeks to integrate quantum computing principles with traditional LSTM networks.
The actual architecture and its practical effectiveness in enhancing sequential data processing remain to be developed and demonstrated in future work.
arXiv Detail & Related papers (2024-06-13T10:26:14Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are known for their effectiveness in learning long sequences.
We develop a new parameterization scheme, called HOPE, for LTI systems that utilize Markov parameters within Hankel operators.
Our new parameterization endows the SSM with non-decaying memory within a fixed time window, which is empirically corroborated by a sequential CIFAR-10 task with padded noise.
arXiv Detail & Related papers (2024-05-22T20:20:14Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
We propose a novel biologically inspired Long Short-Term Memory Leaky Integrate-and-Fire spiking neuron model, dubbed LSTM-LIF.
Our experimental results, on a diverse range of temporal classification tasks, demonstrate superior temporal classification capability, rapid training convergence, strong network generalizability, and high energy efficiency of the proposed LSTM-LIF model.
This work, therefore, opens up a myriad of opportunities for resolving challenging temporal processing tasks on emerging neuromorphic computing machines.
arXiv Detail & Related papers (2023-07-14T08:51:03Z) - Towards Energy-Efficient, Low-Latency and Accurate Spiking LSTMs [1.7969777786551424]
Spiking Neural Networks (SNNs) have emerged as an attractive-temporal computing paradigm vision for complex tasks.
We propose an optimized spiking long short-term memory networks (LSTM) training framework that involves a novel.
rev-to-SNN conversion framework, followed by SNN training.
We evaluate our framework on sequential learning tasks including temporal M, Google Speech Commands (GSC) datasets, and UCI Smartphone on different LSTM architectures.
arXiv Detail & Related papers (2022-10-23T04:10:27Z) - Extreme-Long-short Term Memory for Time-series Prediction [0.0]
Long Short-Term Memory (LSTM) is a new type of Recurrent Neural Networks (RNN)
In this paper, we propose an advanced LSTM algorithm, the Extreme Long Short-Term Memory (E-LSTM)
The new E-LSTM requires only 2 epochs to obtain the results of the 7th epoch traditional LSTM.
arXiv Detail & Related papers (2022-10-15T09:45:48Z) - Working Memory Connections for LSTM [51.742526187978726]
We show that Working Memory Connections constantly improve the performance of LSTMs on a variety of tasks.
Numerical results suggest that the cell state contains useful information that is worth including in the gate structure.
arXiv Detail & Related papers (2021-08-31T18:01:30Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
We trained ESNs and LSTMs on a Cross-Situationnal Learning (CSL) task.
The results are of three kinds: performance comparison, internal dynamics analyses and visualization of latent space.
arXiv Detail & Related papers (2020-12-03T08:32:01Z) - Quantum Long Short-Term Memory [3.675884635364471]
Long short-term memory (LSTM) is a recurrent neural network (RNN) for sequence and temporal dependency data modeling.
We propose a hybrid quantum-classical model of LSTM, which we dub QLSTM.
Our work paves the way toward implementing machine learning algorithms for sequence modeling on noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2020-09-03T16:41:09Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z) - Sentiment Analysis Using Simplified Long Short-term Memory Recurrent
Neural Networks [1.5146765382501612]
We perform sentiment analysis on a GOP Debate Twitter dataset.
To speed up training and reduce the computational cost and time, six different parameter reduced slim versions of the LSTM model are proposed.
arXiv Detail & Related papers (2020-05-08T12:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.