Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis
- URL: http://arxiv.org/abs/2408.10021v1
- Date: Mon, 19 Aug 2024 14:13:30 GMT
- Title: Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis
- Authors: Kira Maag, Roman Resner, Asja Fischer,
- Abstract summary: We propose an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation.
We conduct a detailed analysis of uncertainty-based detection of adversarial attacks and various state-of-the-art neural networks.
Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method.
- Score: 12.133306321357999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have demonstrated remarkable effectiveness across a wide range of tasks such as semantic segmentation. Nevertheless, these networks are vulnerable to adversarial attacks that add imperceptible perturbations to the input image, leading to false predictions. This vulnerability is particularly dangerous in safety-critical applications like automated driving. While adversarial examples and defense strategies are well-researched in the context of image classification, there is comparatively less research focused on semantic segmentation. Recently, we have proposed an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation. We observed that uncertainty, as measured by the entropy of the output distribution, behaves differently on clean versus adversely perturbed images, and we utilize this property to differentiate between the two. In this extended version of our work, we conduct a detailed analysis of uncertainty-based detection of adversarial attacks including a diverse set of adversarial attacks and various state-of-the-art neural networks. Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method, which is lightweight and operates as a post-processing step, i.e., no model modifications or knowledge of the adversarial example generation process are required.
Related papers
- Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - Uncertainty-based Detection of Adversarial Attacks in Semantic
Segmentation [16.109860499330562]
We introduce an uncertainty-based approach for the detection of adversarial attacks in semantic segmentation.
We demonstrate the ability of our approach to detect perturbed images across multiple types of adversarial attacks.
arXiv Detail & Related papers (2023-05-22T08:36:35Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
We propose TREATED, a universal adversarial detection method that can defend against attacks of various perturbation levels without making any assumptions.
Extensive experiments on three competitive neural networks and two widely used datasets show that our method achieves better detection performance than baselines.
arXiv Detail & Related papers (2021-09-13T03:31:20Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
We find that there exists compliance between perturbations and prediction confidence, which guides us to detect few-perturbation attacks from the aspect of prediction confidence.
We propose a method beyond image space by a two-stream architecture, in which the image stream focuses on the pixel artifacts and the gradient stream copes with the confidence artifacts.
arXiv Detail & Related papers (2021-02-23T09:55:03Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.