NeuRodin: A Two-stage Framework for High-Fidelity Neural Surface Reconstruction
- URL: http://arxiv.org/abs/2408.10178v1
- Date: Mon, 19 Aug 2024 17:36:35 GMT
- Title: NeuRodin: A Two-stage Framework for High-Fidelity Neural Surface Reconstruction
- Authors: Yifan Wang, Di Huang, Weicai Ye, Guofeng Zhang, Wanli Ouyang, Tong He,
- Abstract summary: Signed Distance Function (SDF)-based volume rendering has demonstrated significant capabilities in surface reconstruction.
We introduce NeuRodin, a novel two-stage neural surface reconstruction framework.
NeuRodin achieves high-fidelity surface reconstruction and retains the flexible optimization characteristics of density-based methods.
- Score: 63.85586195085141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Signed Distance Function (SDF)-based volume rendering has demonstrated significant capabilities in surface reconstruction. Although promising, SDF-based methods often fail to capture detailed geometric structures, resulting in visible defects. By comparing SDF-based volume rendering to density-based volume rendering, we identify two main factors within the SDF-based approach that degrade surface quality: SDF-to-density representation and geometric regularization. These factors introduce challenges that hinder the optimization of the SDF field. To address these issues, we introduce NeuRodin, a novel two-stage neural surface reconstruction framework that not only achieves high-fidelity surface reconstruction but also retains the flexible optimization characteristics of density-based methods. NeuRodin incorporates innovative strategies that facilitate transformation of arbitrary topologies and reduce artifacts associated with density bias. Extensive evaluations on the Tanks and Temples and ScanNet++ datasets demonstrate the superiority of NeuRodin, showing strong reconstruction capabilities for both indoor and outdoor environments using solely posed RGB captures. Project website: https://open3dvlab.github.io/NeuRodin/
Related papers
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.
Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
We leverage a differentiable radiance field eg NeRF to reconstruct detailed 3D surfaces in addition to producing novel view renderings.
Considering that different methods formulate and optimize the projection from SDF to radiance field with a globally constant Eikonal regularization, we improve with a ray-wise weighting factor.
Our proposed textitRaNeuS are extensively evaluated on both synthetic and real datasets.
arXiv Detail & Related papers (2024-06-14T07:54:25Z) - PSDF: Prior-Driven Neural Implicit Surface Learning for Multi-view
Reconstruction [31.768161784030923]
The framework PSDF is proposed which resorts to external geometric priors from a pretrained MVS network and internal geometric priors inherent in the NISR model.
Experiments on the Tanks and Temples dataset show that PSDF achieves state-of-the-art performance on complex uncontrolled scenes.
arXiv Detail & Related papers (2024-01-23T13:30:43Z) - NeUDF: Leaning Neural Unsigned Distance Fields with Volume Rendering [25.078149064632218]
NeUDF can reconstruct surfaces with arbitrary topologies solely from multi-view supervision.
We extensively evaluate our method over a number of challenging datasets, including DTU, MGN, and Deep Fashion 3D.
arXiv Detail & Related papers (2023-04-20T04:14:42Z) - Looking Through the Glass: Neural Surface Reconstruction Against High
Specular Reflections [72.45512144682554]
We present a novel surface reconstruction framework, NeuS-HSR, based on implicit neural rendering.
In NeuS-HSR, the object surface is parameterized as an implicit signed distance function.
We show that NeuS-HSR outperforms state-of-the-art approaches for accurate and robust target surface reconstruction against HSR.
arXiv Detail & Related papers (2023-04-18T02:34:58Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
We present a novel method, called NeuralUDF, for reconstructing surfaces with arbitrary topologies from 2D images via volume rendering.
In this paper, we propose to represent surfaces as the Unsigned Distance Function (UDF) and develop a new volume rendering scheme to learn the neural UDF representation.
arXiv Detail & Related papers (2022-11-25T15:21:45Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
We present D-NeuS, a volume rendering neural implicit surface reconstruction method capable to recover fine geometry details.
We impose multi-view feature consistency on the surface points, derived by interpolating SDF zero-crossings from sampled points along rays.
Our method reconstructs high-accuracy surfaces with details, and outperforms the state of the art.
arXiv Detail & Related papers (2022-11-21T10:06:09Z) - NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction [88.02850205432763]
We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs.
Existing neural surface reconstruction approaches, such as DVR and IDR, require foreground mask as supervision.
We observe that the conventional volume rendering method causes inherent geometric errors for surface reconstruction.
We propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision.
arXiv Detail & Related papers (2021-06-20T12:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.