Narrowing the Gap between Vision and Action in Navigation
- URL: http://arxiv.org/abs/2408.10388v1
- Date: Mon, 19 Aug 2024 20:09:56 GMT
- Title: Narrowing the Gap between Vision and Action in Navigation
- Authors: Yue Zhang, Parisa Kordjamshidi,
- Abstract summary: We introduce a low-level action decoder jointly trained with high-level action prediction.
Our agent can improve navigation performance metrics compared to the strong baselines on both high-level and low-level actions.
- Score: 28.753809306008996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existing methods for Vision and Language Navigation in the Continuous Environment (VLN-CE) commonly incorporate a waypoint predictor to discretize the environment. This simplifies the navigation actions into a view selection task and improves navigation performance significantly compared to direct training using low-level actions. However, the VLN-CE agents are still far from the real robots since there are gaps between their visual perception and executed actions. First, VLN-CE agents that discretize the visual environment are primarily trained with high-level view selection, which causes them to ignore crucial spatial reasoning within the low-level action movements. Second, in these models, the existing waypoint predictors neglect object semantics and their attributes related to passibility, which can be informative in indicating the feasibility of actions. To address these two issues, we introduce a low-level action decoder jointly trained with high-level action prediction, enabling the current VLN agent to learn and ground the selected visual view to the low-level controls. Moreover, we enhance the current waypoint predictor by utilizing visual representations containing rich semantic information and explicitly masking obstacles based on humans' prior knowledge about the feasibility of actions. Empirically, our agent can improve navigation performance metrics compared to the strong baselines on both high-level and low-level actions.
Related papers
- TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation [11.591176410027224]
This paper presents a Vision-Language Navigation (VLN) agent based on Large Language Models (LLMs)
We propose the Thinking, Interacting, and Action framework to compensate for the shortcomings of LLMs in environmental perception.
Our approach also outperformed some supervised learning-based methods, highlighting its efficacy in zero-shot navigation.
arXiv Detail & Related papers (2024-03-13T05:22:39Z) - VANP: Learning Where to See for Navigation with Self-Supervised Vision-Action Pre-Training [8.479135285935113]
Humans excel at efficiently navigating through crowds without collision by focusing on specific visual regions relevant to navigation.
Most robotic visual navigation methods rely on deep learning models pre-trained on vision tasks, which prioritize salient objects.
We propose a Self-Supervised Vision-Action Model for Visual Navigation Pre-Training (VANP)
arXiv Detail & Related papers (2024-03-12T22:33:08Z) - Visual Forecasting as a Mid-level Representation for Avoidance [8.712750753534532]
The challenge of navigation in environments with dynamic objects continues to be a central issue in the study of autonomous agents.
While predictive methods hold promise, their reliance on precise state information makes them less practical for real-world implementation.
This study presents visual forecasting as an innovative alternative.
arXiv Detail & Related papers (2023-09-17T13:32:03Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
We propose a navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps.
Ego$2$-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation.
arXiv Detail & Related papers (2023-07-23T14:01:05Z) - VELMA: Verbalization Embodiment of LLM Agents for Vision and Language
Navigation in Street View [81.58612867186633]
Vision and Language Navigation(VLN) requires visual and natural language understanding as well as spatial and temporal reasoning capabilities.
We show that VELMA is able to successfully follow navigation instructions in Street View with only two in-context examples.
We further finetune the LLM agent on a few thousand examples and achieve 25%-30% relative improvement in task completion over the previous state-of-the-art for two datasets.
arXiv Detail & Related papers (2023-07-12T11:08:24Z) - Bridging the Gap Between Learning in Discrete and Continuous
Environments for Vision-and-Language Navigation [41.334731014665316]
Most existing works in vision-and-language navigation (VLN) focus on either discrete or continuous environments.
We propose a predictor to generate a set of candidate waypoints during navigation.
We show that agents navigating in continuous environments with predicted waypoints perform significantly better than agents using low-level actions.
arXiv Detail & Related papers (2022-03-05T14:56:14Z) - Waypoint Models for Instruction-guided Navigation in Continuous
Environments [68.2912740006109]
We develop a class of language-conditioned waypoint prediction networks to examine this question.
We measure task performance and estimated execution time on a profiled LoCoBot robot.
Our models outperform prior work in VLN-CE and set a new state-of-the-art on the public leaderboard.
arXiv Detail & Related papers (2021-10-05T17:55:49Z) - Pushing it out of the Way: Interactive Visual Navigation [62.296686176988125]
We study the problem of interactive navigation where agents learn to change the environment to navigate more efficiently to their goals.
We introduce the Neural Interaction Engine (NIE) to explicitly predict the change in the environment caused by the agent's actions.
By modeling the changes while planning, we find that agents exhibit significant improvements in their navigational capabilities.
arXiv Detail & Related papers (2021-04-28T22:46:41Z) - Diagnosing Vision-and-Language Navigation: What Really Matters [61.72935815656582]
Vision-and-language navigation (VLN) is a multimodal task where an agent follows natural language instructions and navigates in visual environments.
Recent studies witness a slow-down in the performance improvements in both indoor and outdoor VLN tasks.
In this work, we conduct a series of diagnostic experiments to unveil agents' focus during navigation.
arXiv Detail & Related papers (2021-03-30T17:59:07Z) - Towards Learning a Generic Agent for Vision-and-Language Navigation via
Pre-training [150.35927365127176]
We present the first pre-training and fine-tuning paradigm for vision-and-language navigation (VLN) tasks.
By training on a large amount of image-text-action triplets in a self-supervised learning manner, the pre-trained model provides generic representations of visual environments and language instructions.
It learns more effectively in new tasks and generalizes better in a previously unseen environment.
arXiv Detail & Related papers (2020-02-25T03:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.