Enhancing One-shot Pruned Pre-trained Language Models through Sparse-Dense-Sparse Mechanism
- URL: http://arxiv.org/abs/2408.10473v1
- Date: Tue, 20 Aug 2024 01:05:45 GMT
- Title: Enhancing One-shot Pruned Pre-trained Language Models through Sparse-Dense-Sparse Mechanism
- Authors: Guanchen Li, Xiandong Zhao, Lian Liu, Zeping Li, Dong Li, Lu Tian, Jie He, Ashish Sirasao, Emad Barsoum,
- Abstract summary: Pre-trained language models (PLMs) are engineered to be robust in contextual understanding and exhibit outstanding performance in various natural language processing tasks.
Modern pruning strategies employ one-shot techniques to compress PLMs without the need for retraining on task-specific or otherwise general data.
We propose SDS, a Sparse-Dense-Sparse pruning framework to enhance the performance of the pruned PLMs from a weight distribution optimization perspective.
- Score: 25.36736897890854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained language models (PLMs) are engineered to be robust in contextual understanding and exhibit outstanding performance in various natural language processing tasks. However, their considerable size incurs significant computational and storage costs. Modern pruning strategies employ one-shot techniques to compress PLMs without the need for retraining on task-specific or otherwise general data; however, these approaches often lead to an indispensable reduction in performance. In this paper, we propose SDS, a Sparse-Dense-Sparse pruning framework to enhance the performance of the pruned PLMs from a weight distribution optimization perspective. We outline the pruning process in three steps. Initially, we prune less critical connections in the model using conventional one-shot pruning methods. Next, we reconstruct a dense model featuring a pruning-friendly weight distribution by reactivating pruned connections with sparse regularization. Finally, we perform a second pruning round, yielding a superior pruned model compared to the initial pruning. Experimental results demonstrate that SDS outperforms the state-of-the-art pruning techniques SparseGPT and Wanda under an identical sparsity configuration. For instance, SDS reduces perplexity by 9.13 on Raw-Wikitext2 and improves accuracy by an average of 2.05% across multiple zero-shot benchmarks for OPT-125M with 2:4 sparsity.
Related papers
- DRPruning: Efficient Large Language Model Pruning through Distributionally Robust Optimization [61.492590008258986]
Large language models (LLMs) deliver impressive results but face challenges from increasing model sizes and computational costs.
We propose DRPruning, which incorporates distributionally robust optimization to restore balanced performance across domains.
arXiv Detail & Related papers (2024-11-21T12:02:39Z) - A Convex-optimization-based Layer-wise Post-training Pruner for Large Language Models [24.185245582500876]
We introduce FISTAPruner, the first post-training pruner based on convex optimization models and algorithms.
FISTAPruner incorporates an intra-layer cumulative error correction mechanism and supports parallel pruning.
We evaluate FISTAPruner on models such as OPT, LLaMA, LLaMA-2, and LLaMA-3 with 125M to 70B parameters under unstructured and 2:4 semi-structured sparsity.
arXiv Detail & Related papers (2024-08-07T12:33:46Z) - Greedy Output Approximation: Towards Efficient Structured Pruning for LLMs Without Retraining [16.026565606764954]
We simplify the pruning process for Transformer-based large language models (LLMs)
We propose two inference-aware pruning criteria derived from the optimization perspective of output approximation.
We also introduce a two-step reconstruction technique to mitigate pruning errors without model retraining.
arXiv Detail & Related papers (2024-07-26T23:53:59Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models [14.310720048047136]
ALPS is an optimization-based framework that tackles the pruning problem using the operator splitting technique and a preconditioned gradient conjugate-based post-processing step.
Our approach incorporates novel techniques to accelerate and theoretically guarantee convergence while leveraging vectorization and GPU parallelism for efficiency.
On the OPT-30B model with 70% sparsity, ALPS achieves a 13% reduction in test perplexity on the WikiText dataset and a 19% improvement in zero-shot benchmark performance compared to existing methods.
arXiv Detail & Related papers (2024-06-12T02:57:41Z) - UniPTS: A Unified Framework for Proficient Post-Training Sparsity [67.16547529992928]
Post-training Sparsity (PTS) is a newly emerged avenue that chases efficient network sparsity with limited data in need.
In this paper, we attempt to reconcile this disparity by transposing three cardinal factors that profoundly alter the performance of conventional sparsity into the context of PTS.
Our framework, termed UniPTS, is validated to be much superior to existing PTS methods across extensive benchmarks.
arXiv Detail & Related papers (2024-05-29T06:53:18Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
Sparsity-Preserved efficient fine-tuning method for large language models.
Code will be made available at https://github.com/Lucky-Lance/SPP.
arXiv Detail & Related papers (2024-05-25T04:55:27Z) - DRIVE: Dual Gradient-Based Rapid Iterative Pruning [2.209921757303168]
Modern deep neural networks (DNNs) consist of millions of parameters, necessitating high-performance computing during training and inference.
Traditional pruning methods that are applied post-training focus on streamlining inference, but there are recent efforts to leverage sparsity early on by pruning before training.
We present Dual Gradient-Based Rapid Iterative Pruning (DRIVE), which leverages dense training for initial epochs to counteract the randomness inherent at the inception.
arXiv Detail & Related papers (2024-04-01T20:44:28Z) - CrAM: A Compression-Aware Minimizer [103.29159003723815]
We propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way.
CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning.
CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware.
arXiv Detail & Related papers (2022-07-28T16:13:28Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
We propose a.
sparse-efficient Sparse Training (PST) method to reduce the number of trainable parameters during sparse-aware training.
Experiments with diverse networks (i.e., BERT, RoBERTa and GPT-2) demonstrate PST performs on par or better than previous sparsity methods.
arXiv Detail & Related papers (2022-05-23T02:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.