Analysis of Plan-based Retrieval for Grounded Text Generation
- URL: http://arxiv.org/abs/2408.10490v1
- Date: Tue, 20 Aug 2024 02:19:35 GMT
- Title: Analysis of Plan-based Retrieval for Grounded Text Generation
- Authors: Ameya Godbole, Nicholas Monath, Seungyeon Kim, Ankit Singh Rawat, Andrew McCallum, Manzil Zaheer,
- Abstract summary: hallucinations occur when a language model is given a generation task outside its parametric knowledge.
A common strategy to address this limitation is to infuse the language models with retrieval mechanisms.
We analyze how planning can be used to guide retrieval to further reduce the frequency of hallucinations.
- Score: 78.89478272104739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In text generation, hallucinations refer to the generation of seemingly coherent text that contradicts established knowledge. One compelling hypothesis is that hallucinations occur when a language model is given a generation task outside its parametric knowledge (due to rarity, recency, domain, etc.). A common strategy to address this limitation is to infuse the language models with retrieval mechanisms, providing the model with relevant knowledge for the task. In this paper, we leverage the planning capabilities of instruction-tuned LLMs and analyze how planning can be used to guide retrieval to further reduce the frequency of hallucinations. We empirically evaluate several variations of our proposed approach on long-form text generation tasks. By improving the coverage of relevant facts, plan-guided retrieval and generation can produce more informative responses while providing a higher rate of attribution to source documents.
Related papers
- A Survey on Natural Language Counterfactual Generation [7.022371235308068]
Natural language counterfactual generation aims to minimally modify a given text such that the modified text will be classified into a different class.
We propose a new taxonomy that systematically categorizes the generation methods into four groups and summarizes the metrics for evaluating the generation quality.
arXiv Detail & Related papers (2024-07-04T15:13:59Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - Retrieval augmentation of large language models for lay language
generation [12.686922203465896]
We introduce CELLS, the largest (63k pairs) and broadest-ranging (12 journals) parallel corpus for lay language generation.
The abstract and the corresponding lay language summary are written by domain experts, assuring the quality of our dataset.
We derive two specialized paired corpora from CELLS to address key challenges in lay language generation: generating background explanations and simplifying the original abstract.
arXiv Detail & Related papers (2022-11-07T19:06:53Z) - Survey of Hallucination in Natural Language Generation [69.9926849848132]
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies.
Deep learning based generation is prone to hallucinate unintended text, which degrades the system performance.
This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
arXiv Detail & Related papers (2022-02-08T03:55:01Z) - A Survey on Retrieval-Augmented Text Generation [53.04991859796971]
Retrieval-augmented text generation has remarkable advantages and has achieved state-of-the-art performance in many NLP tasks.
It firstly highlights the generic paradigm of retrieval-augmented generation, and then it reviews notable approaches according to different tasks.
arXiv Detail & Related papers (2022-02-02T16:18:41Z) - Improving Adversarial Text Generation by Modeling the Distant Future [155.83051741029732]
We consider a text planning scheme and present a model-based imitation-learning approach to alleviate the aforementioned issues.
We propose a novel guider network to focus on the generative process over a longer horizon, which can assist next-word prediction and provide intermediate rewards for generator optimization.
arXiv Detail & Related papers (2020-05-04T05:45:13Z) - A Controllable Model of Grounded Response Generation [122.7121624884747]
Current end-to-end neural conversation models inherently lack the flexibility to impose semantic control in the response generation process.
We propose a framework that we call controllable grounded response generation (CGRG)
We show that using this framework, a transformer based model with a novel inductive attention mechanism, trained on a conversation-like Reddit dataset, outperforms strong generation baselines.
arXiv Detail & Related papers (2020-05-01T21:22:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.