Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation
- URL: http://arxiv.org/abs/2408.10537v2
- Date: Sat, 5 Oct 2024 19:37:40 GMT
- Title: Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation
- Authors: Jiawei Han, Kaiqi Liu, Wei Li, Guangzhi Chen,
- Abstract summary: This paper introduces a novel method, namely subspace prototype guidance (textbfSPG) to guide the training of segmentation network.
The proposed method significantly improves the segmentation performance and surpasses the state-of-the-art method.
- Score: 23.250178208474928
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Point cloud semantic segmentation can significantly enhance the perception of an intelligent agent. Nevertheless, the discriminative capability of the segmentation network is influenced by the quantity of samples available for different categories. To mitigate the cognitive bias induced by class imbalance, this paper introduces a novel method, namely subspace prototype guidance (\textbf{SPG}), to guide the training of segmentation network. Specifically, the point cloud is initially separated into independent point sets by category to provide initial conditions for the generation of feature subspaces. The auxiliary branch which consists of an encoder and a projection head maps these point sets into separate feature subspaces. Subsequently, the feature prototypes which are extracted from the current separate subspaces and then combined with prototypes of historical subspaces guide the feature space of main branch to enhance the discriminability of features of minority categories. The prototypes derived from the feature space of main branch are also employed to guide the training of the auxiliary branch, forming a supervisory loop to maintain consistent convergence of the entire network. The experiments conducted on the large public benchmarks (i.e. S3DIS, ScanNet v2, ScanNet200, Toronto-3D) and collected real-world data illustrate that the proposed method significantly improves the segmentation performance and surpasses the state-of-the-art method. The code is available at \url{https://github.com/Javion11/PointLiBR.git}.
Related papers
- Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Boosting Few-shot 3D Point Cloud Segmentation via Query-Guided
Enhancement [30.017448714419455]
This paper proposes a novel approach to improve point cloud few-shot segmentation (PC-FSS) models.
Unlike existing PC-FSS methods that directly utilize categorical information from support prototypes to recognize novel classes in query samples, our method identifies two critical aspects that substantially enhance model performance.
arXiv Detail & Related papers (2023-08-06T18:07:45Z) - Few-Shot 3D Point Cloud Semantic Segmentation via Stratified
Class-Specific Attention Based Transformer Network [22.9434434107516]
We develop a new multi-layer transformer network for few-shot point cloud semantic segmentation.
Our method achieves the new state-of-the-art performance, with 15% less inference time, over existing few-shot 3D point cloud segmentation models.
arXiv Detail & Related papers (2023-03-28T00:27:54Z) - Understanding Imbalanced Semantic Segmentation Through Neural Collapse [81.89121711426951]
We show that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes.
We introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure.
Our method ranks 1st and sets a new record on the ScanNet200 test leaderboard.
arXiv Detail & Related papers (2023-01-03T13:51:51Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
We propose SemAffiNet for point cloud semantic segmentation.
We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets.
arXiv Detail & Related papers (2022-05-26T17:00:23Z) - Weakly Supervised 3D Point Cloud Segmentation via Multi-Prototype
Learning [37.76664203157892]
A fundamental challenge here lies in the large intra-class variations of local geometric structure, resulting in subclasses within a semantic class.
We leverage this intuition and opt for maintaining an individual classifier for each subclass.
Our hypothesis is also verified given the consistent discovery of semantic subclasses at no cost of additional annotations.
arXiv Detail & Related papers (2022-05-06T11:07:36Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
Few-shot segmentation aims to segment unseen-class objects given only a handful of densely labeled samples.
We propose a simple yet versatile framework in the spirit of divide-and-conquer.
Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information.
arXiv Detail & Related papers (2022-04-21T06:21:14Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - Omni-supervised Point Cloud Segmentation via Gradual Receptive Field
Component Reasoning [41.83979510282989]
We bring the first omni-scale supervision method to point cloud segmentation via the proposed gradual Receptive Field Component Reasoning (RFCR)
Our method brings new state-of-the-art performances for S3DIS as well as Semantic3D and ranks the 1st in the ScanNet benchmark among all the point-based methods.
arXiv Detail & Related papers (2021-05-21T08:32:02Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
We propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method.
Our proposed method shows significant and consistent improvements compared to baselines in different few-shot point cloud semantic segmentation settings.
arXiv Detail & Related papers (2020-06-22T08:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.