MPL: Lifting 3D Human Pose from Multi-view 2D Poses
- URL: http://arxiv.org/abs/2408.10805v1
- Date: Tue, 20 Aug 2024 12:55:14 GMT
- Title: MPL: Lifting 3D Human Pose from Multi-view 2D Poses
- Authors: Seyed Abolfazl Ghasemzadeh, Alexandre Alahi, Christophe De Vleeschouwer,
- Abstract summary: We propose combining 2D pose estimation, for which large and rich training datasets exist, and 2D-to-3D pose lifting, using a transformer-based network.
Our experiments demonstrate decreases up to 45% in MPJPE errors compared to the 3D pose obtained by triangulating the 2D poses.
- Score: 75.26416079541723
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Estimating 3D human poses from 2D images is challenging due to occlusions and projective acquisition. Learning-based approaches have been largely studied to address this challenge, both in single and multi-view setups. These solutions however fail to generalize to real-world cases due to the lack of (multi-view) 'in-the-wild' images paired with 3D poses for training. For this reason, we propose combining 2D pose estimation, for which large and rich training datasets exist, and 2D-to-3D pose lifting, using a transformer-based network that can be trained from synthetic 2D-3D pose pairs. Our experiments demonstrate decreases up to 45% in MPJPE errors compared to the 3D pose obtained by triangulating the 2D poses. The framework's source code is available at https://github.com/aghasemzadeh/OpenMPL .
Related papers
- MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcan handle multiple tasks including 3D human pose estimation, 3D pose estimation from cluded 2D pose, and 3D pose completion in a textocbfsingle framework.
We conduct extensive experiments and ablation studies on several widely used human pose datasets and achieve state-of-the-art performance on MPI-INF-3DHP.
arXiv Detail & Related papers (2023-06-29T10:30:00Z) - VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual
Data [69.64723752430244]
We introduce VirtualPose, a two-stage learning framework to exploit the hidden "free lunch" specific to this task.
The first stage transforms images to abstract geometry representations (AGR), and then the second maps them to 3D poses.
It addresses the generalization issue from two aspects: (1) the first stage can be trained on diverse 2D datasets to reduce the risk of over-fitting to limited appearance; (2) the second stage can be trained on diverse AGR synthesized from a large number of virtual cameras and poses.
arXiv Detail & Related papers (2022-07-20T14:47:28Z) - Lifting 2D Human Pose to 3D with Domain Adapted 3D Body Concept [49.49032810966848]
Existing 3D pose estimation suffers from 1) the inherent ambiguity between the 2D and 3D data, and 2) the lack of well labeled 2D-3D pose pairs in the wild.
We propose a new framework that leverages the labeled 3D human poses to learn a 3D concept of the human body to reduce the ambiguity.
By adapting the two domains, the body knowledge learned from 3D poses is applied to 2D poses and guides the 2D pose encoder to generate informative 3D "imagination" as embedding in pose lifting.
arXiv Detail & Related papers (2021-11-23T16:02:12Z) - Shape-aware Multi-Person Pose Estimation from Multi-View Images [47.13919147134315]
Our proposed coarse-to-fine pipeline first aggregates noisy 2D observations from multiple camera views into 3D space.
The final pose estimates are attained from a novel optimization scheme which links high-confidence multi-view 2D observations and 3D joint candidates.
arXiv Detail & Related papers (2021-10-05T20:04:21Z) - SVMA: A GAN-based model for Monocular 3D Human Pose Estimation [0.8379286663107844]
We present an unsupervised GAN-based model to recover 3D human pose from 2D joint locations extracted from a single image.
Considering the reprojection constraint, our model can estimate the camera so that we can reproject the estimated 3D pose to the original 2D pose.
Results on Human3.6M show that our method outperforms all the state-of-the-art methods, and results on MPI-INF-3DHP show that our method outperforms state-of-the-art by approximately 15.0%.
arXiv Detail & Related papers (2021-06-10T09:43:57Z) - TriPose: A Weakly-Supervised 3D Human Pose Estimation via Triangulation
from Video [23.00696619207748]
Estimating 3D human poses from video is a challenging problem.
The lack of 3D human pose annotations is a major obstacle for supervised training and for generalization to unseen datasets.
We propose a weakly-supervised training scheme that does not require 3D annotations or calibrated cameras.
arXiv Detail & Related papers (2021-05-14T00:46:48Z) - VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild
Environment [80.77351380961264]
We present an approach to estimate 3D poses of multiple people from multiple camera views.
We present an end-to-end solution which operates in the $3$D space, therefore avoids making incorrect decisions in the 2D space.
We propose Pose Regression Network (PRN) to estimate a detailed 3D pose for each proposal.
arXiv Detail & Related papers (2020-04-13T23:50:01Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
We propose to estimate 3D human pose from multi-view images and a few IMUs attached at person's limbs.
It operates by firstly detecting 2D poses from the two signals, and then lifting them to the 3D space.
The simple two-step approach reduces the error of the state-of-the-art by a large margin on a public dataset.
arXiv Detail & Related papers (2020-03-25T00:26:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.