Benchmarking Large Language Models for Math Reasoning Tasks
- URL: http://arxiv.org/abs/2408.10839v1
- Date: Tue, 20 Aug 2024 13:34:17 GMT
- Title: Benchmarking Large Language Models for Math Reasoning Tasks
- Authors: Kathrin Seßler, Yao Rong, Emek Gözlüklü, Enkelejda Kasneci,
- Abstract summary: We compare seven state-of-the-art in-context learning algorithms for mathematical problem solving across five widely used mathematical datasets on four powerful foundation models.
Our results indicate that larger foundation models like GPT-4o and LLaMA 3-70B can solve mathematical reasoning independently from the concrete prompting strategy.
We open-source our benchmark code to support the integration of additional models in future research.
- Score: 12.91916443702145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of Large Language Models (LLMs) in mathematical reasoning has become a cornerstone of related research, demonstrating the intelligence of these models and enabling potential practical applications through their advanced performance, such as in educational settings. Despite the variety of datasets and in-context learning algorithms designed to improve the ability of LLMs to automate mathematical problem solving, the lack of comprehensive benchmarking across different datasets makes it complicated to select an appropriate model for specific tasks. In this project, we present a benchmark that fairly compares seven state-of-the-art in-context learning algorithms for mathematical problem solving across five widely used mathematical datasets on four powerful foundation models. Furthermore, we explore the trade-off between efficiency and performance, highlighting the practical applications of LLMs for mathematical reasoning. Our results indicate that larger foundation models like GPT-4o and LLaMA 3-70B can solve mathematical reasoning independently from the concrete prompting strategy, while for smaller models the in-context learning approach significantly influences the performance. Moreover, the optimal prompt depends on the chosen foundation model. We open-source our benchmark code to support the integration of additional models in future research.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning [0.9787137564521711]
We show how a combination of semantic search, prompt engineering, and fine-tuning can be applied to dramatically improve the ability of LLMs to execute these tasks accurately.
We compare both proprietary models, like GPT-4, and open-source models, like Llama-2-70b, as well as various embedding methods.
arXiv Detail & Related papers (2024-04-16T03:39:16Z) - MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs [38.127313175508746]
MathGenie is a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset.
Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique.
MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
arXiv Detail & Related papers (2024-02-26T07:17:25Z) - ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving [170.7899683843177]
ToRA is a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical problems.
ToRA models significantly outperform open-source models on 10 mathematical reasoning datasets across all scales.
ToRA-Code-34B is the first open-source model that achieves an accuracy exceeding 50% on MATH.
arXiv Detail & Related papers (2023-09-29T17:59:38Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.