LBC: Language-Based-Classifier for Out-Of-Variable Generalization
- URL: http://arxiv.org/abs/2408.10923v3
- Date: Sat, 24 Aug 2024 03:22:09 GMT
- Title: LBC: Language-Based-Classifier for Out-Of-Variable Generalization
- Authors: Kangjun Noh, Baekryun Seong, Hoyoon Byun, Youngjun Choi, Sungjin Song, Kyungwoo Song,
- Abstract summary: Large Language Models (LLMs) have great success in natural language processing tasks such as response generation.
We find that the pre-trained knowledge of LLMs enables them to interpret new variables that appear in a test without additional training.
We propose a Language-Based-Classifier (LBC) to maximize the benefits of LLMs to outperform TMLs on Out-of-Variable tasks.
- Score: 14.033963471962823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have great success in natural language processing tasks such as response generation. However, their use in tabular data has been limited due to their inferior performance compared to traditional machine learning models (TMLs) such as XGBoost. We find that the pre-trained knowledge of LLMs enables them to interpret new variables that appear in a test without additional training, a capability central to the concept of Out-of-Variable (OOV). From the findings, we propose a Language-Based-Classifier (LBC), a classifier that maximizes the benefits of LLMs to outperform TMLs on OOV tasks. LBC employs three key methodological strategies: 1) Categorical changes to adjust data to better fit the model's understanding, 2) Advanced order and indicator to enhance data representation to the model, and 3) Using verbalizer to map logit scores to classes during inference to generate model predictions. These strategies, combined with the pre-trained knowledge of LBC, emphasize the model's ability to effectively handle OOV tasks. We empirically and theoretically validate the superiority of LBC. LBC is the first study to apply an LLM-based model to OOV tasks. The source code is at https://github.com/sksmssh/LBCforOOVGen
Related papers
- Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
Large language models (LLMs) have demonstrated remarkable success in NLP tasks.
We benchmarked one supervised classic machine learning model based on Support Vector Machines (SVMs), three supervised pretrained language models (PLMs) based on RoBERTa, BERTweet, and SocBERT, and two LLM based classifiers (GPT3.5 and GPT4), across 6 text classification tasks.
Our comprehensive experiments demonstrate that employ-ing data augmentation using LLMs (GPT-4) with relatively small human-annotated data to train lightweight supervised classification models achieves superior results compared to training with human-annotated data
arXiv Detail & Related papers (2024-03-27T22:05:10Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.