MegaFusion: Extend Diffusion Models towards Higher-resolution Image Generation without Further Tuning
- URL: http://arxiv.org/abs/2408.11001v3
- Date: Mon, 18 Nov 2024 06:40:24 GMT
- Title: MegaFusion: Extend Diffusion Models towards Higher-resolution Image Generation without Further Tuning
- Authors: Haoning Wu, Shaocheng Shen, Qiang Hu, Xiaoyun Zhang, Ya Zhang, Yanfeng Wang,
- Abstract summary: MegaFusion extends existing diffusion-based text-to-image models towards efficient higher-resolution generation.
We employ an innovative truncate and relay strategy to bridge the denoising processes across different resolutions.
By integrating dilated convolutions and noise re-scheduling, we further adapt the model's priors for higher resolution.
- Score: 38.560064789022704
- License:
- Abstract: Diffusion models have emerged as frontrunners in text-to-image generation, but their fixed image resolution during training often leads to challenges in high-resolution image generation, such as semantic deviations and object replication. This paper introduces MegaFusion, a novel approach that extends existing diffusion-based text-to-image models towards efficient higher-resolution generation without additional fine-tuning or adaptation. Specifically, we employ an innovative truncate and relay strategy to bridge the denoising processes across different resolutions, allowing for high-resolution image generation in a coarse-to-fine manner. Moreover, by integrating dilated convolutions and noise re-scheduling, we further adapt the model's priors for higher resolution. The versatility and efficacy of MegaFusion make it universally applicable to both latent-space and pixel-space diffusion models, along with other derivative models. Extensive experiments confirm that MegaFusion significantly boosts the capability of existing models to produce images of megapixels and various aspect ratios, while only requiring about 40% of the original computational cost.
Related papers
- Dual Diffusion for Unified Image Generation and Understanding [32.7554623473768]
We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation.
We leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly.
Our model attained competitive performance compared to recent unified image understanding and generation models.
arXiv Detail & Related papers (2024-12-31T05:49:00Z) - FAM Diffusion: Frequency and Attention Modulation for High-Resolution Image Generation with Stable Diffusion [63.609399000712905]
Inference at a scaled resolution leads to repetitive patterns and structural distortions.
We propose two simple modules that combine to solve these issues.
Our method, coined Fam diffusion, can seamlessly integrate into any latent diffusion model and requires no additional training.
arXiv Detail & Related papers (2024-11-27T17:51:44Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance [11.44012694656102]
Large-scale generative models, such as text-to-image diffusion models, have garnered widespread attention across diverse domains.
Existing large-scale diffusion models are confined to generating images of up to 1K resolution.
We propose a novel progressive approach that fully utilizes generated low-resolution images to guide the generation of higher-resolution images.
arXiv Detail & Related papers (2024-06-26T16:10:31Z) - Make a Cheap Scaling: A Self-Cascade Diffusion Model for
Higher-Resolution Adaptation [112.08287900261898]
This paper proposes a novel self-cascade diffusion model for rapid adaptation to higher-resolution image and video generation.
Our approach achieves a 5X training speed-up and requires only an additional 0.002M tuning parameters.
Experiments demonstrate that our approach can quickly adapt to higher resolution image and video synthesis by fine-tuning for just 10k steps, with virtually no additional inference time.
arXiv Detail & Related papers (2024-02-16T07:48:35Z) - HiDiffusion: Unlocking Higher-Resolution Creativity and Efficiency in Pretrained Diffusion Models [13.68666823175341]
HiDiffusion is a tuning-free higher-resolution framework for image synthesis.
RAU-Net dynamically adjusts the feature map size to resolve object duplication.
MSW-MSA engages optimized window attention to reduce computations.
arXiv Detail & Related papers (2023-11-29T11:01:38Z) - ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with
Diffusion Models [126.35334860896373]
We investigate the capability of generating images from pre-trained diffusion models at much higher resolutions than the training image sizes.
Existing works for higher-resolution generation, such as attention-based and joint-diffusion approaches, cannot well address these issues.
We propose a simple yet effective re-dilation that can dynamically adjust the convolutional perception field during inference.
arXiv Detail & Related papers (2023-10-11T17:52:39Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
This paper introduces an Implicit Diffusion Model (IDM) for high-fidelity continuous image super-resolution.
IDM integrates an implicit neural representation and a denoising diffusion model in a unified end-to-end framework.
The scaling factor regulates the resolution and accordingly modulates the proportion of the LR information and generated features in the final output.
arXiv Detail & Related papers (2023-03-29T07:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.