On Missing Scores in Evolving Multibiometric Systems
- URL: http://arxiv.org/abs/2408.11271v1
- Date: Wed, 21 Aug 2024 01:47:06 GMT
- Title: On Missing Scores in Evolving Multibiometric Systems
- Authors: Melissa R Dale, Anil Jain, Arun Ross,
- Abstract summary: We show that the application of various score imputation methods along with simple sum fusion can improve recognition accuracy.
Experiments show that fusion after score imputation outperforms fusion with no imputation.
- Score: 9.700630422387974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of multiple modalities (e.g., face and fingerprint) or multiple algorithms (e.g., three face comparators) has shown to improve the recognition accuracy of an operational biometric system. Over time a biometric system may evolve to add new modalities, retire old modalities, or be merged with other biometric systems. This can lead to scenarios where there are missing scores corresponding to the input probe set. Previous work on this topic has focused on either the verification or identification tasks, but not both. Further, the proportion of missing data considered has been less than 50%. In this work, we study the impact of missing score data for both the verification and identification tasks. We show that the application of various score imputation methods along with simple sum fusion can improve recognition accuracy, even when the proportion of missing scores increases to 90%. Experiments show that fusion after score imputation outperforms fusion with no imputation. Specifically, iterative imputation with K nearest neighbors consistently surpasses other imputation methods in both the verification and identification tasks, regardless of the amount of scores missing, and provides imputed values that are consistent with the ground truth complete dataset.
Related papers
- To Impute or Not: Recommendations for Multibiometric Fusion [12.095385419245007]
We evaluate various score imputation approaches on three multimodal biometric score datasets.
Balancing the classes in the training data is crucial to mitigate negative biases in the imputation technique.
arXiv Detail & Related papers (2024-08-15T01:54:39Z) - Open-Set Biometrics: Beyond Good Closed-Set Models [15.65725865703615]
Most practical applications involve open-set biometrics, where probe subjects may or may not be present in the gallery.
Existing loss functions are inconsistent with open-set evaluation.
We introduce novel loss functions: (1) the identification-detection loss optimized for open-set performance under selective thresholds and (2) relative threshold minimization to reduce the maximum negative score for each probe.
arXiv Detail & Related papers (2024-07-23T02:34:39Z) - IdentiFace : A VGG Based Multimodal Facial Biometric System [0.0]
"IdentiFace" is a multimodal facial biometric system that combines the core of facial recognition with some of the most important soft biometric traits such as gender, face shape, and emotion.
For the recognition problem, we acquired a 99.2% test accuracy for five classes with high intra-class variations using data collected from the FERET database.
We were also able to achieve a testing accuracy of 88.03% in the face-shape problem using the celebrity face-shape dataset.
arXiv Detail & Related papers (2024-01-02T14:36:28Z) - t-EER: Parameter-Free Tandem Evaluation of Countermeasures and Biometric
Comparators [27.452032643800223]
Presentation attack (spoofing) detection (PAD) typically operates alongside biometric verification to improve reliablity in the face of spoofing attacks.
We introduce a new metric for the joint evaluation of PAD solutions operating in situ with biometric verification.
arXiv Detail & Related papers (2023-09-21T16:30:40Z) - Untargeted Near-collision Attacks on Biometrics: Real-world Bounds and
Theoretical Limits [0.0]
We focus on untargeted attacks that can be carried out both online and offline, and in both identification and verification modes.
We use the False Match Rate (FMR) and the False Positive Identification Rate (FPIR) to address the security of these systems.
The study of this metric space, and system parameters, gives us the complexity of untargeted attacks and the probability of a near-collision.
arXiv Detail & Related papers (2023-04-04T07:17:31Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
We describe and evaluate the ATVS-UAM fusion approach submitted to the quality-based evaluation of the 2007 BioSecure Multimodal Evaluation Campaign.
Our approach is based on linear logistic regression, in which fused scores tend to be log-likelihood-ratios.
Results show that the proposed approach outperforms all the rule-based fusion schemes.
arXiv Detail & Related papers (2022-11-24T12:11:22Z) - Facial Soft Biometrics for Recognition in the Wild: Recent Works,
Annotation, and COTS Evaluation [63.05890836038913]
We study the role of soft biometrics to enhance person recognition systems in unconstrained scenarios.
We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems.
Experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning.
arXiv Detail & Related papers (2022-10-24T11:29:57Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
This work carries out a comparative analysis of unimodal and multimodal behavioral biometric traits.
Experiments are performed over HuMIdb, one of the largest and most comprehensive freely available mobile user interaction databases.
In our experiments, the most discriminative background sensor is the magnetometer, whereas among touch tasks the best results are achieved with keystroke.
arXiv Detail & Related papers (2022-03-14T17:05:59Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
We aim to locate and provide a unique identifier for each mouse in a cluttered home-cage environment through time.
This is a very challenging problem due to (i) the lack of distinguishing visual features for each mouse, and (ii) the close confines of the scene with constant occlusion.
Our approach achieves 77% accuracy on this animal identification problem, and is able to reject spurious detections when the animals are hidden.
arXiv Detail & Related papers (2021-12-13T17:11:32Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign.
The campaign targeted the application of physical access control in a medium-size establishment with some 500 persons.
To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms.
arXiv Detail & Related papers (2021-11-17T13:39:48Z) - Families In Wild Multimedia: A Multimodal Database for Recognizing
Kinship [63.27052967981546]
We introduce the first publicly available multi-task MM kinship dataset.
To build FIW MM, we developed machinery to automatically collect, annotate, and prepare the data.
Results highlight edge cases to inspire future research with different areas of improvement.
arXiv Detail & Related papers (2020-07-28T22:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.