Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method
- URL: http://arxiv.org/abs/2408.11345v4
- Date: Wed, 09 Oct 2024 08:50:06 GMT
- Title: Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method
- Authors: Ze Liu, Jin Zhang, Chao Feng, Defu Lian, Jie Wang, Enhong Chen,
- Abstract summary: We propose a Deep Tree-based Retriever (DTR) for efficient recommendation.
DTR frames the training task as a softmax-based multi-class classification over tree nodes at the same level.
To mitigate the suboptimality induced by the labeling of non-leaf nodes, we propose a rectification method for the loss function.
- Score: 76.31185707649227
- License:
- Abstract: Although advancements in deep learning have significantly enhanced the recommendation accuracy of deep recommendation models, these methods still suffer from low recommendation efficiency. Recently proposed tree-based deep recommendation models alleviate the problem by directly learning tree structure and representations under the guidance of recommendation objectives. To guarantee the effectiveness of beam search for recommendation accuracy, these models strive to ensure that the tree adheres to the max-heap assumption, where a parent node's preference should be the maximum among its children's preferences. However, they employ a one-versus-all strategy, framing the training task as a series of independent binary classification objectives for each node, which limits their ability to fully satisfy the max-heap assumption. To this end, we propose a Deep Tree-based Retriever (DTR for short) for efficient recommendation. DTR frames the training task as a softmax-based multi-class classification over tree nodes at the same level, enabling explicit horizontal competition and more discriminative top-k selection among them, which mimics the beam search behavior during training. To mitigate the suboptimality induced by the labeling of non-leaf nodes, we propose a rectification method for the loss function, which further aligns with the max-heap assumption in expectation. As the number of tree nodes grows exponentially with the levels, we employ sampled softmax to approximate optimization and thereby enhance efficiency. Furthermore, we propose a tree-based sampling method to reduce the bias inherent in sampled softmax. Theoretical results reveal DTR's generalization capability, and both the rectification method and tree-based sampling contribute to improved generalization. The experiments are conducted on four real-world datasets, validating the effectiveness of the proposed method.
Related papers
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
We study the sample efficiency of OPE with human preference and establish a statistical guarantee for it.
By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2023-10-16T16:27:06Z) - bsnsing: A decision tree induction method based on recursive optimal
boolean rule composition [2.28438857884398]
This paper proposes a new mixed-integer programming (MIP) formulation to optimize split rule selection in the decision tree induction process.
It develops an efficient search solver that is able to solve practical instances faster than commercial solvers.
arXiv Detail & Related papers (2022-05-30T17:13:57Z) - Robust Optimal Classification Trees Against Adversarial Examples [5.254093731341154]
We propose a collection of methods to train decision trees that are optimally robust against user-specified attack models.
We show that the min-max optimization problem that arises in adversarial learning can be solved using a single minimization formulation.
We also present a method that determines the upper bound on adversarial accuracy for any model using bipartite matching.
arXiv Detail & Related papers (2021-09-08T18:10:49Z) - Strong Optimal Classification Trees [8.10995244893652]
We propose an intuitive flow-based MIO formulation for learning optimal binary classification trees.
Our formulation can accommodate side constraints to enable the design of interpretable and fair decision trees.
We show that our proposed approaches are 29 times faster than state-of-the-art MIO-based techniques.
arXiv Detail & Related papers (2021-03-29T21:40:58Z) - Optimal Decision Trees for Nonlinear Metrics [42.18286681448184]
We show a novel algorithm for producing optimal trees for nonlinear metrics.
To the best of our knowledge, this is the first method to compute provably optimal decision trees for nonlinear metrics.
Our approach leads to a trade-off when compared to optimising linear metrics.
arXiv Detail & Related papers (2020-09-15T08:30:56Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.