FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation
- URL: http://arxiv.org/abs/2408.11701v1
- Date: Wed, 21 Aug 2024 15:26:21 GMT
- Title: FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation
- Authors: Philip Schutte, Valentina Corbetta, Regina Beets-Tan, Wilson Silva,
- Abstract summary: We propose FedGS, a novel FL aggregation method, to improve segmentation performance on small, under-represented targets.
FedGS demonstrates superior performance over FedAvg, particularly for small lesions, across PolypGen and LiTS datasets.
- Score: 0.4499833362998489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) in Deep Learning (DL)-automated medical image segmentation helps preserving privacy by enabling collaborative model training without sharing patient data. However, FL faces challenges with data heterogeneity among institutions, leading to suboptimal global models. Integrating Disentangled Representation Learning (DRL) in FL can enhance robustness by separating data into distinct representations. Existing DRL methods assume heterogeneity lies solely in style features, overlooking content-based variability like lesion size and shape. We propose FedGS, a novel FL aggregation method, to improve segmentation performance on small, under-represented targets while maintaining overall efficacy. FedGS demonstrates superior performance over FedAvg, particularly for small lesions, across PolypGen and LiTS datasets. The code and pre-trained checkpoints are available at the following link: https://github.com/Trustworthy-AI-UU-NKI/Federated-Learning-Disentanglement
Related papers
- FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging [12.307490659840845]
We introduce FedMRL, a novel multi-agent deep reinforcement learning framework designed to address data heterogeneity.
FedMRL incorporates a novel loss function to facilitate fairness among clients, preventing bias in the final global model.
We assess our approach using two publicly available real-world medical datasets, and the results demonstrate that FedMRL significantly outperforms state-of-the-art techniques.
arXiv Detail & Related papers (2024-07-08T10:10:07Z) - Federated Learning under Partially Class-Disjoint Data via Manifold Reshaping [64.58402571292723]
We propose a manifold reshaping approach called FedMR to calibrate the feature space of local training.
We conduct extensive experiments on a range of datasets to demonstrate that our FedMR achieves much higher accuracy and better communication efficiency.
arXiv Detail & Related papers (2024-05-29T10:56:13Z) - FedLPPA: Learning Personalized Prompt and Aggregation for Federated Weakly-supervised Medical Image Segmentation [1.6013679829631893]
Federated learning (FL) effectively mitigates the data silo challenge brought about by policies and privacy concerns.
Traditional centralized FL models grapple with diverse multi-center data, notably in medical contexts.
We propose a novel personalized FL framework with learnable prompt and aggregation (FedLPPA) to uniformly leverage heterogeneous weak supervision for medical image segmentation.
arXiv Detail & Related papers (2024-02-27T13:41:32Z) - Unifying and Personalizing Weakly-supervised Federated Medical Image
Segmentation via Adaptive Representation and Aggregation [1.121358474059223]
Federated learning (FL) enables multiple sites to collaboratively train powerful deep models without compromising data privacy and security.
Weakly supervised segmentation, which uses sparsely-grained supervision, is increasingly being paid attention to due to its great potential of reducing annotation costs.
We propose a novel personalized FL framework for medical image segmentation, named FedICRA, which uniformly leverages heterogeneous weak supervision.
arXiv Detail & Related papers (2023-04-12T06:32:08Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
We present a robust and label-efficient self-supervised FL framework for medical image analysis.
Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline.
We show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios.
arXiv Detail & Related papers (2022-05-17T18:33:43Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
We propose a new benchmark for federated domain translation on unsupervised brain image synthesis (termed as FedMed-GAN)
FedMed-GAN mitigates the mode collapse without sacrificing the performance of generators.
A comprehensive evaluation is provided for comparing FedMed-GAN and other centralized methods.
arXiv Detail & Related papers (2022-01-22T02:50:29Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
Collaborative machine learning techniques such as federated learning (FL) enable the training of models on effectively larger datasets without data transfer.
Recent initiatives have demonstrated that segmentation models trained with FL can achieve performance similar to locally trained models.
However, FL is not a fully privacy-preserving technique and privacy-centred attacks can disclose confidential patient data.
arXiv Detail & Related papers (2021-07-06T12:57:32Z) - Auto-FedAvg: Learnable Federated Averaging for Multi-Institutional
Medical Image Segmentation [7.009650174262515]
Federated learning (FL) enables collaborative model training while preserving each participant's privacy.
FedAvg is a standard algorithm that uses fixed weights, often originating from the dataset sizes at each client, to aggregate the distributed learned models on a server during the FL process.
In this work, we design a new data-driven approach, namely Auto-FedAvg, where aggregation weights are dynamically adjusted.
arXiv Detail & Related papers (2021-04-20T18:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.