D-RMGPT: Robot-assisted collaborative tasks driven by large multimodal models
- URL: http://arxiv.org/abs/2408.11761v1
- Date: Wed, 21 Aug 2024 16:34:21 GMT
- Title: D-RMGPT: Robot-assisted collaborative tasks driven by large multimodal models
- Authors: M. Forlini, M. Babcinschi, G. Palmieri, P. Neto,
- Abstract summary: Detection-Robot Management GPT (D-RMGPT) is a robot-assisted assembly planner based on Large Multimodal Models (LMM)
It can assist inexperienced operators in assembly tasks without requiring any markers or previous training.
It achieves an assembly success rate of 83% while reducing the assembly time for inexperienced operators by 33% compared to the manual process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative robots are increasingly popular for assisting humans at work and daily tasks. However, designing and setting up interfaces for human-robot collaboration is challenging, requiring the integration of multiple components, from perception and robot task control to the hardware itself. Frequently, this leads to highly customized solutions that rely on large amounts of costly training data, diverging from the ideal of flexible and general interfaces that empower robots to perceive and adapt to unstructured environments where they can naturally collaborate with humans. To overcome these challenges, this paper presents the Detection-Robot Management GPT (D-RMGPT), a robot-assisted assembly planner based on Large Multimodal Models (LMM). This system can assist inexperienced operators in assembly tasks without requiring any markers or previous training. D-RMGPT is composed of DetGPT-V and R-ManGPT. DetGPT-V, based on GPT-4V(vision), perceives the surrounding environment through one-shot analysis of prompted images of the current assembly stage and the list of components to be assembled. It identifies which components have already been assembled by analysing their features and assembly requirements. R-ManGPT, based on GPT-4, plans the next component to be assembled and generates the robot's discrete actions to deliver it to the human co-worker. Experimental tests on assembling a toy aircraft demonstrated that D-RMGPT is flexible and intuitive to use, achieving an assembly success rate of 83% while reducing the assembly time for inexperienced operators by 33% compared to the manual process. http://robotics-and-ai.github.io/LMMmodels/
Related papers
- $\textbf{EMOS}$: $\textbf{E}$mbodiment-aware Heterogeneous $\textbf{M}$ulti-robot $\textbf{O}$perating $\textbf{S}$ystem with LLM Agents [33.77674812074215]
We introduce a novel multi-agent framework designed to enable effective collaboration among heterogeneous robots.
We propose a self-prompted approach, where agents comprehend robot URDF files and call robot kinematics tools to generate descriptions of their physics capabilities.
The Habitat-MAS benchmark is designed to assess how a multi-agent framework handles tasks that require embodiment-aware reasoning.
arXiv Detail & Related papers (2024-10-30T03:20:01Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Enhancing Supermarket Robot Interaction: A Multi-Level LLM Conversational Interface for Handling Diverse Customer Intents [46.623273455512106]
This paper presents the design and evaluation of a novel multi-level LLM interface for supermarket robots.
We compare this approach to a specialized GPT model powered by GPT-4 Turbo.
We find statistically significant improvements in four key areas: performance, user satisfaction, user-agent partnership, and self-image enhancement.
arXiv Detail & Related papers (2024-06-16T19:13:01Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Automatic Robotic Development through Collaborative Framework by Large
Language Models [13.957351735394683]
We propose an innovative automated collaboration framework inspired by real-world robot developers.
This framework employs multiple LLMs in distinct roles analysts, programmers, and testers.
Analysts delve deep into user requirements, enabling programmers to produce precise code, while testers fine-tune the parameters.
arXiv Detail & Related papers (2024-02-06T04:40:27Z) - AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot
Manipulation [50.737355245505334]
We propose a novel framework for learning high-level cognitive capabilities in robot manipulation tasks.
The resulting dataset AlphaBlock consists of 35 comprehensive high-level tasks of multi-step text plans and paired observation.
arXiv Detail & Related papers (2023-05-30T09:54:20Z) - GoferBot: A Visual Guided Human-Robot Collaborative Assembly System [33.649596318580215]
GoferBot is a novel vision-based semantic HRC system for a real-world assembly task.
GoferBot is a novel assembly system that seamlessly integrates all sub-modules by utilising implicit semantic information purely from visual perception.
arXiv Detail & Related papers (2023-04-18T09:09:01Z) - PACT: Perception-Action Causal Transformer for Autoregressive Robotics
Pre-Training [25.50131893785007]
This work introduces a paradigm for pre-training a general purpose representation that can serve as a starting point for multiple tasks on a given robot.
We present the Perception-Action Causal Transformer (PACT), a generative transformer-based architecture that aims to build representations directly from robot data in a self-supervised fashion.
We show that finetuning small task-specific networks on top of the larger pretrained model results in significantly better performance compared to training a single model from scratch for all tasks simultaneously.
arXiv Detail & Related papers (2022-09-22T16:20:17Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.