RFID based Health Adherence Medicine Case Using Fair Federated Learning
- URL: http://arxiv.org/abs/2408.11782v1
- Date: Wed, 21 Aug 2024 17:12:40 GMT
- Title: RFID based Health Adherence Medicine Case Using Fair Federated Learning
- Authors: Ali Kamrani khodaei, Sina Hajer Ahmadi,
- Abstract summary: We introduce the Smart Pill Case, a smart health adherence tool that leverages RFID-based data recording and NFC-based data extraction.
This system incorporates a load cell for precise dosage measurement and features an Android app to monitor medication intake, offer suggestions, and issue warnings.
Federated learning allows the Smart Pill Case to learn from medication adherence patterns across multiple users without compromising individual privacy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medication nonadherence significantly reduces the effectiveness of therapies, yet it remains prevalent among patients. Nonadherence has been linked to adverse outcomes, including increased risks of mortality and hospitalization. Although various methods exist to help patients track medication schedules, such as the Intelligent Drug Administration System (IDAS) and Smart Blister, these tools often face challenges that hinder their commercial viability. Building on the principles of dosage measurement and information communication in IoT, we introduce the Smart Pill Case a smart health adherence tool that leverages RFID-based data recording and NFC-based data extraction. This system incorporates a load cell for precise dosage measurement and features an Android app to monitor medication intake, offer suggestions, and issue warnings. To enhance the effectiveness and personalization of the Smart Pill Case, we propose integrating federated learning into the system. Federated learning allows the Smart Pill Case to learn from medication adherence patterns across multiple users without compromising individual privacy. By training machine learning models on decentralized data collected from various Smart Pill Cases, the system can continuously improve its recommendations and warnings, adapting to the diverse needs and behaviors of users. This approach not only enhances the tools ability to support medication adherence but also ensures that sensitive user data remains secure and private.
Related papers
- Which Client is Reliable?: A Reliable and Personalized Prompt-based Federated Learning for Medical Image Question Answering [51.26412822853409]
We present a novel personalized federated learning (pFL) method for medical visual question answering (VQA) models.
Our method introduces learnable prompts into a Transformer architecture to efficiently train it on diverse medical datasets without massive computational costs.
arXiv Detail & Related papers (2024-10-23T00:31:17Z) - Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - Explainable Machine Learning-Based Security and Privacy Protection Framework for Internet of Medical Things Systems [1.8434042562191815]
The Internet of Medical Things (IoMT) transcends traditional medical boundaries, enabling a transition from reactive treatment to proactive prevention.
Its benefits are countered by significant security challenges that endanger the lives of its users due to the sensitivity and value of the processed data.
A new framework for Intrusion Detection Systems (IDS) is introduced, leveraging Artificial Neural Networks (ANN) for intrusion detection while utilizing Federated Learning (FL) for privacy preservation.
arXiv Detail & Related papers (2024-03-14T11:57:26Z) - Advancing Medical Education through the cINnAMON Web Application [0.0]
cINnAMON EUREKA Traditional project endeavours to revolutionize indoor lighting positioning and monitoring.
Current variant of the intelligent bulb prototype offers a comparative analysis of the project's bulb against commercially available smart bulbs.
Initial smart bracelet prototype showcases its ability to collect and analyse data from an array of built-in sensors.
arXiv Detail & Related papers (2023-11-30T10:49:51Z) - StratMed: Relevance Stratification between Biomedical Entities for
Sparsity on Medication Recommendation [9.296433860766165]
StratMed is a stratification strategy that overcomes the long-tailed problem and achieves fuller learning of sparse data.
It also utilizes a dual-property network to address the issue of mutual constraints on the safety and accuracy of medication combinations.
Our model reduces safety risk by 15.08%, improves accuracy by 0.36%, and reduces training time consumption by 81.66%.
arXiv Detail & Related papers (2023-08-31T14:59:32Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - MedSensor: Medication Adherence Monitoring Using Neural Networks on
Smartwatch Accelerometer Sensor Data [0.0]
Poor medication adherence presents serious economic and health problems.
We developed a smartwatch application to collect the accelerometer hand gesture data from the smartwatch.
We developed neural networks, then trained the networks on the sensor data to recognize medication and non-medication gestures.
arXiv Detail & Related papers (2021-05-19T03:42:30Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - Rapidly Personalizing Mobile Health Treatment Policies with Limited Data [9.07325490998379]
We present IntelligentPooling, which learns personalized policies via an adaptive, principled use of other users' data.
We show that IntelligentPooling achieves an average of 26% lower regret than state-of-the-art across all generative models.
arXiv Detail & Related papers (2020-02-23T18:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.