Optical ISAC: Fundamental Performance Limits and Transceiver Design
- URL: http://arxiv.org/abs/2408.11792v5
- Date: Thu, 10 Oct 2024 09:58:36 GMT
- Title: Optical ISAC: Fundamental Performance Limits and Transceiver Design
- Authors: Alireza Ghazavi Khorasgani, Mahtab Mirmohseni, Ahmed Elzanaty,
- Abstract summary: This paper characterizes the optimal capacity-distortion (C-D) tradeoff in an optical point-to-point system.
We consider the optimal rate-distortion (R-D) region and explore several inner and outer bounds (OB)
- Score: 5.97536075941862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper characterizes the optimal capacity-distortion (C-D) tradeoff in an optical point-to-point system with single-input single-output (SISO) for communication and single-input multiple-output (SIMO) for sensing within an integrated sensing and communication (ISAC) framework. We consider the optimal rate-distortion (R-D) region and explore several inner (IB) and outer bounds (OB). We introduce practical, asymptotically optimal maximum a posteriori (MAP) and maximum likelihood estimators (MLE) for target distance, addressing nonlinear measurement-to-state relationships and non-conjugate priors. As the number of sensing antennas increases, these estimators converge to the Bayesian Cram\'er-Rao bound (BCRB). We also establish that the achievable rate-Cram\'er-Rao bound (R-CRB) serves as an OB for the optimal C-D region, valid for both unbiased estimators and asymptotically large numbers of receive antennas. To clarify that the input distribution determines the tradeoff across the Pareto boundary of the C-D region, we propose two algorithms: i) an iterative Blahut-Arimoto algorithm (BAA)-type method, and ii) a memory-efficient closed-form (CF) approach. The CF approach includes a CF optimal distribution for high optical signal-to-noise ratio (O-SNR) conditions. Additionally, we adapt and refine the deterministic-random tradeoff (DRT) to this optical ISAC context.
Related papers
- D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Data-Driven Optimization of Directed Information over Discrete Alphabets [15.372626012233736]
Directed information (DI) is a fundamental measure for the study and analysis of sequential analytic models.
We propose a novel estimation-optimization framework for DI over discrete input spaces.
arXiv Detail & Related papers (2023-01-02T12:25:40Z) - On the Effective Usage of Priors in RSS-based Localization [56.68864078417909]
We propose a Received Signal Strength (RSS) fingerprint and convolutional neural network-based algorithm, LocUNet.
In this paper, we study the localization problem in dense urban settings.
We first recognize LocUNet's ability to learn the underlying prior distribution of the Rx position or Rx and transmitter (Tx) association preferences from the training data, and attribute its high performance to these.
arXiv Detail & Related papers (2022-11-28T00:31:02Z) - Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization [108.35402316802765]
We propose a new first-order optimization algorithm -- AcceleratedGradient-OptimisticGradient (AG-OG) Ascent.
We show that AG-OG achieves the optimal convergence rate (up to a constant) for a variety of settings.
We extend our algorithm to extend the setting and achieve the optimal convergence rate in both bi-SC-SC and bi-C-SC settings.
arXiv Detail & Related papers (2022-10-31T17:59:29Z) - Optimal Scaling for Locally Balanced Proposals in Discrete Spaces [65.14092237705476]
We show that efficiency of Metropolis-Hastings (M-H) algorithms in discrete spaces can be characterized by an acceptance rate that is independent of the target distribution.
Knowledge of the optimal acceptance rate allows one to automatically tune the neighborhood size of a proposal distribution in a discrete space, directly analogous to step-size control in continuous spaces.
arXiv Detail & Related papers (2022-09-16T22:09:53Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Computing X-ray absorption spectra from linear-response particles atop
optimized holes [0.0]
State specific orbital optimized density functional theory (OO-DFT) methods can attain semiquantitative accuracy for predicting X-ray absorption spectra of closed-shell molecules.
We present an approach to generate an approximate core-excited state density for use with the ROKS energy ansatz.
This hybrid approach can be viewed as a DFT generalization of the static-exchange (STEX) method, and can attain $sim 0.6$ eV RMS error for the K-edges of C-F.
arXiv Detail & Related papers (2022-03-25T09:26:25Z) - Communication-Efficient Stochastic Zeroth-Order Optimization for
Federated Learning [28.65635956111857]
Federated learning (FL) enables edge devices to collaboratively train a global model without sharing their private data.
To enhance the training efficiency of FL, various algorithms have been proposed, ranging from first-order computation to first-order methods.
arXiv Detail & Related papers (2022-01-24T08:56:06Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar [12.982044791524494]
This paper considers the problem of multi-target detection for massive multiple input multiple output (MMIMO) cognitive radar (CR)
We propose a reinforcement learning (RL) based algorithm for cognitive multi-target detection in the presence of unknown disturbance statistics.
Numerical simulations are performed to assess the performance of the proposed RL-based algorithm in both stationary and dynamic environments.
arXiv Detail & Related papers (2020-05-10T16:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.