Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants
- URL: http://arxiv.org/abs/2408.11841v1
- Date: Wed, 7 Aug 2024 12:11:49 GMT
- Title: Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants
- Authors: Beatriz Borges, Negar Foroutan, Deniz Bayazit, Anna Sotnikova, Syrielle Montariol, Tanya Nazaretzky, Mohammadreza Banaei, Alireza Sakhaeirad, Philippe Servant, Seyed Parsa Neshaei, Jibril Frej, Angelika Romanou, Gail Weiss, Sepideh Mamooler, Zeming Chen, Simin Fan, Silin Gao, Mete Ismayilzada, Debjit Paul, Alexandre Schöpfer, Andrej Janchevski, Anja Tiede, Clarence Linden, Emanuele Troiani, Francesco Salvi, Freya Behrens, Giacomo Orsi, Giovanni Piccioli, Hadrien Sevel, Louis Coulon, Manuela Pineros-Rodriguez, Marin Bonnassies, Pierre Hellich, Puck van Gerwen, Sankalp Gambhir, Solal Pirelli, Thomas Blanchard, Timothée Callens, Toni Abi Aoun, Yannick Calvino Alonso, Yuri Cho, Alberto Chiappa, Antonio Sclocchi, Étienne Bruno, Florian Hofhammer, Gabriel Pescia, Geovani Rizk, Leello Dadi, Lucas Stoffl, Manoel Horta Ribeiro, Matthieu Bovel, Yueyang Pan, Aleksandra Radenovic, Alexandre Alahi, Alexander Mathis, Anne-Florence Bitbol, Boi Faltings, Cécile Hébert, Devis Tuia, François Maréchal, George Candea, Giuseppe Carleo, Jean-Cédric Chappelier, Nicolas Flammarion, Jean-Marie Fürbringer, Jean-Philippe Pellet, Karl Aberer, Lenka Zdeborová, Marcel Salathé, Martin Jaggi, Martin Rajman, Mathias Payer, Matthieu Wyart, Michael Gastpar, Michele Ceriotti, Ola Svensson, Olivier Lévêque, Paolo Ienne, Rachid Guerraoui, Robert West, Sanidhya Kashyap, Valerio Piazza, Viesturs Simanis, Viktor Kuncak, Volkan Cevher, Philippe Schwaller, Sacha Friedli, Patrick Jermann, Tanja Kaser, Antoine Bosselut,
- Abstract summary: We evaluate whether two AI assistants, GPT-3.5 and GPT-4, can adequately answer assessment questions.
GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions.
Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
- Score: 175.9723801486487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI assistants are being increasingly used by students enrolled in higher education institutions. While these tools provide opportunities for improved teaching and education, they also pose significant challenges for assessment and learning outcomes. We conceptualize these challenges through the lens of vulnerability, the potential for university assessments and learning outcomes to be impacted by student use of generative AI. We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses. Specifically, we compile a novel dataset of textual assessment questions from 50 courses at EPFL and evaluate whether two AI assistants, GPT-3.5 and GPT-4 can adequately answer these questions. We use eight prompting strategies to produce responses and find that GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions. When grouping courses in our dataset by degree program, these systems already pass non-project assessments of large numbers of core courses in various degree programs, posing risks to higher education accreditation that will be amplified as these models improve. Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
Related papers
- Evaluating GPT-4 at Grading Handwritten Solutions in Math Exams [48.99818550820575]
We leverage state-of-the-art multi-modal AI models, in particular GPT-4o, to automatically grade handwritten responses to college-level math exams.
Using real student responses to questions in a probability theory exam, we evaluate GPT-4o's alignment with ground-truth scores from human graders using various prompting techniques.
arXiv Detail & Related papers (2024-11-07T22:51:47Z) - CourseAssist: Pedagogically Appropriate AI Tutor for Computer Science Education [1.052788652996288]
This poster introduces CourseAssist, a novel LLM-based tutoring system tailored for computer science education.
Unlike generic LLM systems, CourseAssist uses retrieval-augmented generation, user intent classification, and question decomposition to align AI responses with specific course materials and learning objectives.
arXiv Detail & Related papers (2024-05-01T20:43:06Z) - Evaluating Large Language Models on the GMAT: Implications for the
Future of Business Education [0.13654846342364302]
This study introduces the first benchmark to assess the performance of seven major Large Language Models (LLMs)
Our analysis shows that most LLMs outperform human candidates, with GPT-4 Turbo not only outperforming the other models but also surpassing the average scores of graduate students at top business schools.
While AI's promise in education, assessment, and tutoring is clear, challenges remain.
arXiv Detail & Related papers (2024-01-02T03:54:50Z) - Student Mastery or AI Deception? Analyzing ChatGPT's Assessment
Proficiency and Evaluating Detection Strategies [1.633179643849375]
Generative AI systems such as ChatGPT have a disruptive effect on learning and assessment.
This work investigates the performance of ChatGPT by evaluating it across three courses.
arXiv Detail & Related papers (2023-11-27T20:10:13Z) - Thrilled by Your Progress! Large Language Models (GPT-4) No Longer
Struggle to Pass Assessments in Higher Education Programming Courses [0.0]
GPT models evolved from completely failing the typical programming class' assessments to confidently passing the courses with no human involvement.
This study provides evidence that programming instructors need to prepare for a world in which there is an easy-to-use technology that can be utilized by learners to collect passing scores.
arXiv Detail & Related papers (2023-06-15T22:12:34Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
The exponential growth of question answering (QA) has made it an indispensable topic in any Natural Language Processing (NLP) course.
We introduce UKP-SQuARE as a platform for QA education.
Students can run, compare, and analyze various QA models from different perspectives.
arXiv Detail & Related papers (2023-05-31T11:29:04Z) - Performance of ChatGPT on the US Fundamentals of Engineering Exam:
Comprehensive Assessment of Proficiency and Potential Implications for
Professional Environmental Engineering Practice [0.0]
This study investigates the feasibility and effectiveness of using ChatGPT, a GPT-4 based model, in achieving satisfactory performance on the Fundamentals of Engineering (FE) Environmental Exam.
The findings reflect remarkable improvements in mathematical capabilities across successive iterations of ChatGPT models, showcasing their potential in solving complex engineering problems.
arXiv Detail & Related papers (2023-04-20T16:54:34Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
We evaluate the current state-of-the-art AES models using a model adversarial evaluation scheme and associated metrics.
We find that AES models are highly overstable. Even heavy modifications(as much as 25%) with content unrelated to the topic of the questions do not decrease the score produced by the models.
arXiv Detail & Related papers (2020-07-14T03:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.