Unraveling Text Generation in LLMs: A Stochastic Differential Equation Approach
- URL: http://arxiv.org/abs/2408.11863v1
- Date: Sat, 17 Aug 2024 15:30:27 GMT
- Title: Unraveling Text Generation in LLMs: A Stochastic Differential Equation Approach
- Authors: Yukun Zhang,
- Abstract summary: This paper explores the application of Differential Equations (SDE) to interpret the text generation process of Large Language Models (LLMs) such as GPT-4.
We represent this generation process using SDE to capture both deterministic trends and perturbations.
We fit these functions using neural networks and validate the model on real-world text corpora.
- Score: 3.4039202831583903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the application of Stochastic Differential Equations (SDE) to interpret the text generation process of Large Language Models (LLMs) such as GPT-4. Text generation in LLMs is modeled as a stochastic process where each step depends on previously generated content and model parameters, sampling the next word from a vocabulary distribution. We represent this generation process using SDE to capture both deterministic trends and stochastic perturbations. The drift term describes the deterministic trends in the generation process, while the diffusion term captures the stochastic variations. We fit these functions using neural networks and validate the model on real-world text corpora. Through numerical simulations and comprehensive analyses, including drift and diffusion analysis, stochastic process property evaluation, and phase space exploration, we provide deep insights into the dynamics of text generation. This approach not only enhances the understanding of the inner workings of LLMs but also offers a novel mathematical perspective on language generation, which is crucial for diagnosing, optimizing, and controlling the quality of generated text.
Related papers
- Neural SDEs as a Unified Approach to Continuous-Domain Sequence Modeling [3.8980564330208662]
We propose a novel and intuitive approach to continuous sequence modeling.
Our method interprets time-series data as textitdiscrete samples from an underlying continuous dynamical system.
We derive a maximum principled objective and a textitsimulation-free scheme for efficient training of our Neural SDE model.
arXiv Detail & Related papers (2025-01-31T03:47:22Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - Amortized Probabilistic Conditioning for Optimization, Simulation and Inference [20.314865219675056]
Amortized Conditioning Engine (ACE)
A new transformer-based meta-learning model that explicitly represents latent variables of interest.
ACE affords conditioning on both observed data and interpretable latent variables, the inclusion of priors at runtime, and outputs predictive distributions for discrete and continuous data and latents.
arXiv Detail & Related papers (2024-10-20T07:22:54Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - Language Model Decoding as Direct Metrics Optimization [87.68281625776282]
Current decoding methods struggle to generate texts that align with human texts across different aspects.
In this work, we frame decoding from a language model as an optimization problem with the goal of strictly matching the expected performance with human texts.
We prove that this induced distribution is guaranteed to improve the perplexity on human texts, which suggests a better approximation to the underlying distribution of human texts.
arXiv Detail & Related papers (2023-10-02T09:35:27Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - A Reparameterized Discrete Diffusion Model for Text Generation [39.0145272152805]
This work studies discrete diffusion probabilistic models with applications to natural language generation.
We derive an alternative yet equivalent formulation of the sampling from discrete diffusion processes.
We conduct extensive experiments to evaluate the text generation capability of our model, demonstrating significant improvements over existing diffusion models.
arXiv Detail & Related papers (2023-02-11T16:26:57Z) - Diverse Text Generation via Variational Encoder-Decoder Models with
Gaussian Process Priors [21.71928935339393]
We present a novel latent structured variable model to generate high quality texts.
Specifically, we introduce a function to map deterministic encoder hidden states into random context variables.
To address the learning challenge of Gaussian processes, we propose an efficient variational inference approach.
arXiv Detail & Related papers (2022-04-04T04:09:15Z) - A Contrastive Framework for Neural Text Generation [46.845997620234265]
We show that an underlying reason for model degeneration is the anisotropic distribution of token representations.
We present a contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the model's representation space, and (ii) a decoding method -- contrastive search -- to encourage diversity while maintaining coherence in the generated text.
arXiv Detail & Related papers (2022-02-13T21:46:14Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.