Third-Quantized Master Equations as a classical Ornstein-Uhlenbeck Process
- URL: http://arxiv.org/abs/2408.11893v2
- Date: Wed, 4 Sep 2024 15:35:46 GMT
- Title: Third-Quantized Master Equations as a classical Ornstein-Uhlenbeck Process
- Authors: LĂ©once Dupays,
- Abstract summary: Third quantization is used in open quantum systems to construct a superoperator basis in which quadratic Lindbladians can be turned into a normal form.
We introduce a new basis for third quantization that bridges this gap between third quantization and the $Q$ representation.
The equation of motion reduces to a multidimensional complex Ornstein-Uhlenbeck process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Third quantization is used in open quantum systems to construct a superoperator basis in which quadratic Lindbladians can be turned into a normal form. From it follows the spectral properties of the Lindbladian, including eigenvalues and eigenvectors. However, the connection between third quantization and the semiclassical representations usually employed to obtain the dynamics of open quantum systems remains opaque. We introduce a new basis for third quantization that bridges this gap between third quantization and the $Q$ representation by projecting the master equation onto a superoperator coherent state basis. The equation of motion reduces to a multidimensional complex Ornstein-Uhlenbeck process.
Related papers
- Emergent gravity from the correlation of spin-$\tfrac{1}{2}$ systems coupled with a scalar field [0.0]
This paper introduces several ideas of emergent gravity, which come from a system similar to an ensemble of quantum spin-$tfrac12$ particles.
To derive a physically relevant theory, the model is constructed by quantizing a scalar field in curved space-time.
arXiv Detail & Related papers (2024-05-03T14:34:48Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Systematic construction of non-autonomous Hamiltonian equations of
Painlev\'e-type. III. Quantization [0.0]
This is the third article in our series of articles exploring connections between dynamical systems of St"ackel-type and Painlev'e-type.
arXiv Detail & Related papers (2022-05-15T16:35:56Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Intrinsic decoherence dynamics in the three-coupled harmonic oscillators
interaction [77.34726150561087]
We give an explicit solution for the complete equation, i.e., beyond the usual second order approximation used to arrive to the Lindblad form.
arXiv Detail & Related papers (2021-08-01T02:36:23Z) - QuantumCumulants.jl: A Julia framework for generalized mean-field
equations in open quantum systems [0.0]
We present an open-source framework that fully automizes equations of motion of operators up to a desired order.
After reviewing the theory we present the framework and showcase its usefulness in a few example problems.
arXiv Detail & Related papers (2021-05-04T08:53:02Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.