The Whole Is Bigger Than the Sum of Its Parts: Modeling Individual Annotators to Capture Emotional Variability
- URL: http://arxiv.org/abs/2408.11956v1
- Date: Wed, 21 Aug 2024 19:24:06 GMT
- Title: The Whole Is Bigger Than the Sum of Its Parts: Modeling Individual Annotators to Capture Emotional Variability
- Authors: James Tavernor, Yara El-Tawil, Emily Mower Provost,
- Abstract summary: Emotion expression and perception are nuanced, complex, and highly subjective processes.
Most speech emotion recognition tasks address this by averaging annotator labels as ground truth.
Previous work has attempted to learn distributions to capture emotion variability, but these methods also lose information about the individual annotators.
We introduce a novel method to create distributions from continuous model outputs that permit the learning of emotion distributions during model training.
- Score: 7.1394038985662664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion expression and perception are nuanced, complex, and highly subjective processes. When multiple annotators label emotional data, the resulting labels contain high variability. Most speech emotion recognition tasks address this by averaging annotator labels as ground truth. However, this process omits the nuance of emotion and inter-annotator variability, which are important signals to capture. Previous work has attempted to learn distributions to capture emotion variability, but these methods also lose information about the individual annotators. We address these limitations by learning to predict individual annotators and by introducing a novel method to create distributions from continuous model outputs that permit the learning of emotion distributions during model training. We show that this combined approach can result in emotion distributions that are more accurate than those seen in prior work, in both within- and cross-corpus settings.
Related papers
- Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification [37.823815777259036]
We introduce a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions.
Our approach not only preserves high accuracy in emotion prediction but also significantly reduces the magnitude of errors in cases of misclassification.
arXiv Detail & Related papers (2024-04-02T10:06:30Z) - Handling Ambiguity in Emotion: From Out-of-Domain Detection to
Distribution Estimation [45.53789836426869]
The subjective perception of emotion leads to inconsistent labels from human annotators.
This paper investigates three methods to handle ambiguous emotion.
We show that incorporating utterances without majority-agreed labels as an additional class in the classifier reduces the classification performance of the other emotion classes.
We also propose detecting utterances with ambiguous emotions as out-of-domain samples by quantifying the uncertainty in emotion classification using evidential deep learning.
arXiv Detail & Related papers (2024-02-20T09:53:38Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
We investigate how well human-annotated emotion triggers correlate with features deemed salient in their prediction of emotions.
Using EmoTrigger, we evaluate the ability of large language models to identify emotion triggers.
Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.
arXiv Detail & Related papers (2023-11-16T06:20:13Z) - Unifying the Discrete and Continuous Emotion labels for Speech Emotion
Recognition [28.881092401807894]
In paralinguistic analysis for emotion detection from speech, emotions have been identified with discrete or dimensional (continuous-valued) labels.
We propose a model to jointly predict continuous and discrete emotional attributes.
arXiv Detail & Related papers (2022-10-29T16:12:31Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
Visual Emotion Analysis (VEA) aims to predict people's emotions towards different visual stimuli.
Existing methods often predict visual emotion distribution in a unified network, neglecting the inherent subjectivity in its crowd voting process.
We propose a novel textitSubjectivity Appraise-and-Match Network (SAMNet) to investigate the subjectivity in visual emotion distribution.
arXiv Detail & Related papers (2022-07-25T02:20:03Z) - Label Distribution Amendment with Emotional Semantic Correlations for
Facial Expression Recognition [69.18918567657757]
We propose a new method that amends the label distribution of each facial image by leveraging correlations among expressions in the semantic space.
By comparing semantic and task class-relation graphs of each image, the confidence of its label distribution is evaluated.
Experimental results demonstrate the proposed method is more effective than compared state-of-the-art methods.
arXiv Detail & Related papers (2021-07-23T07:46:14Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - SpanEmo: Casting Multi-label Emotion Classification as Span-prediction [15.41237087996244]
We propose a new model "SpanEmo" casting multi-label emotion classification as span-prediction.
We introduce a loss function focused on modelling multiple co-existing emotions in the input sentence.
Experiments performed on the SemEval2018 multi-label emotion data over three language sets demonstrate our method's effectiveness.
arXiv Detail & Related papers (2021-01-25T12:11:04Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
We propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues.
Our model achieves state-of-the-art performance on most of the emotion categories.
Our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
arXiv Detail & Related papers (2020-09-21T06:10:39Z) - EmoGraph: Capturing Emotion Correlations using Graph Networks [71.53159402053392]
We propose EmoGraph that captures the dependencies among different emotions through graph networks.
EmoGraph outperforms strong baselines, especially for macro-F1.
An experiment illustrates the captured emotion correlations can also benefit a single-label classification task.
arXiv Detail & Related papers (2020-08-21T08:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.