Reasoning and Tools for Human-Level Forecasting
- URL: http://arxiv.org/abs/2408.12036v2
- Date: Thu, 31 Oct 2024 23:08:03 GMT
- Title: Reasoning and Tools for Human-Level Forecasting
- Authors: Elvis Hsieh, Preston Fu, Jonathan Chen,
- Abstract summary: We present Reasoning and Tools for Forecasting (RTF), a framework of reasoning-and-acting (ReAct) agents that can retrieve updated information and run numerical simulation with equipped tools.
We evaluate our model with questions from competitive forecasting platforms and demonstrate that our method is competitive with and can outperform human predictions.
- Score: 0.4261908132550109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models (LMs) trained on web-scale datasets are largely successful due to their ability to memorize large amounts of training data, even if only present in a few examples. These capabilities are often desirable in evaluation on tasks such as question answering but raise questions about whether these models can exhibit genuine reasoning or succeed only at mimicking patterns from the training data. This distinction is particularly salient in forecasting tasks, where the answer is not present in the training data, and the model must reason to make logical deductions. We present Reasoning and Tools for Forecasting (RTF), a framework of reasoning-and-acting (ReAct) agents that can dynamically retrieve updated information and run numerical simulation with equipped tools. We evaluate our model with questions from competitive forecasting platforms and demonstrate that our method is competitive with and can outperform human predictions. This suggests that LMs, with the right tools, can indeed think and adapt like humans, offering valuable insights for real-world decision-making.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - VQA Training Sets are Self-play Environments for Generating Few-shot Pools [2.556825820539693]
We propose a technique in which existing training sets can be directly used for constructing computational environments with task metrics as rewards.
The proposed method starts with zero-shot prompts and iteratively refines them by selecting few-shot examples that maximize the task metric on the training set.
Our experiments showcase how Gemini learns how to use itself, or another smaller and specialized model such as ScreenAI, to iteratively improve performance on training sets.
arXiv Detail & Related papers (2024-05-30T07:38:58Z) - Optimal design of experiments in the context of machine-learning inter-atomic potentials: improving the efficiency and transferability of kernel based methods [0.7234862895932991]
Data-driven, machine learning (ML) models of atomistic interactions can relate nuanced aspects of atomic arrangements into predictions of energies and forces.
The main challenge stems from the fact that descriptors of chemical environments are often sparse high-dimensional objects without a well-defined continuous metric.
We will demonstrate that classical concepts of statistical planning of experiments and optimal design can help to mitigate such problems at a relatively low computational cost.
arXiv Detail & Related papers (2024-05-14T14:14:23Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
This paper introduces the concept of machine unlearning which is specifically designed to remove the influence of part of the dataset on an already trained forecaster.
A performance-aware algorithm is proposed by evaluating the sensitivity of local model parameter change using influence function and sample re-weighting.
We tested the unlearning algorithms on linear, CNN, andMixer based load forecasters with a realistic load dataset.
arXiv Detail & Related papers (2023-08-28T08:50:12Z) - Making Pre-trained Language Models both Task-solvers and
Self-calibrators [52.98858650625623]
Pre-trained language models (PLMs) serve as backbones for various real-world systems.
Previous work shows that introducing an extra calibration task can mitigate this issue.
We propose a training algorithm LM-TOAST to tackle the challenges.
arXiv Detail & Related papers (2023-07-21T02:51:41Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
We show how we can employ submodular optimization to select highly representative subsets of the training corpora.
We show that the resulting models achieve up to $sim99%$ of the performance of the fully-trained models.
arXiv Detail & Related papers (2023-05-11T09:24:41Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC) reveals the ability to understand a given text passage and answer questions based on it.
Existing research works in MRC rely heavily on large-size models and corpus to improve the performance evaluated by metrics such as Exact Match.
We argue that a deep understanding of model capabilities and data properties can help us feed a model with appropriate training data.
arXiv Detail & Related papers (2022-03-05T14:15:59Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
Estimating the number of distinct values (NDV) in a column is useful for many tasks in database systems.
In this work, we focus on how to derive accurate NDV estimations from random (online/offline) samples.
We propose to formulate the NDV estimation task in a supervised learning framework, and aim to learn a model as the estimator.
arXiv Detail & Related papers (2022-02-06T15:42:04Z) - Using Shape Metrics to Describe 2D Data Points [0.0]
We propose to use shape metrics to describe 2D data to help make analyses more explainable and interpretable.
This is particularly important in applications in the medical community where the right to explainability' is crucial.
arXiv Detail & Related papers (2022-01-27T23:28:42Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.