Multi-Task Curriculum Graph Contrastive Learning with Clustering Entropy Guidance
- URL: http://arxiv.org/abs/2408.12071v1
- Date: Thu, 22 Aug 2024 02:18:47 GMT
- Title: Multi-Task Curriculum Graph Contrastive Learning with Clustering Entropy Guidance
- Authors: Chusheng Zeng, Bocheng Wang, Jinghui Yuan, Rong Wang, Mulin Chen,
- Abstract summary: We propose the Clustering-guided Curriculum Graph contrastive Learning (CCGL) framework.
CCGL uses clustering entropy as the guidance of the following graph augmentation and contrastive learning.
Experimental results demonstrate that CCGL has achieved excellent performance compared to state-of-the-art competitors.
- Score: 25.5510013711661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in unsupervised deep graph clustering have been significantly promoted by contrastive learning. Despite the strides, most graph contrastive learning models face challenges: 1) graph augmentation is used to improve learning diversity, but commonly used random augmentation methods may destroy inherent semantics and cause noise; 2) the fixed positive and negative sample selection strategy is limited to deal with complex real data, thereby impeding the model's capability to capture fine-grained patterns and relationships. To reduce these problems, we propose the Clustering-guided Curriculum Graph contrastive Learning (CCGL) framework. CCGL uses clustering entropy as the guidance of the following graph augmentation and contrastive learning. Specifically, according to the clustering entropy, the intra-class edges and important features are emphasized in augmentation. Then, a multi-task curriculum learning scheme is proposed, which employs the clustering guidance to shift the focus from the discrimination task to the clustering task. In this way, the sample selection strategy of contrastive learning can be adjusted adaptively from early to late stage, which enhances the model's flexibility for complex data structure. Experimental results demonstrate that CCGL has achieved excellent performance compared to state-of-the-art competitors.
Related papers
- Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Adversarial Curriculum Graph Contrastive Learning with Pair-wise
Augmentation [35.875976206333185]
ACGCL capitalizes on the merits of pair-wise augmentation to engender graph-level positive and negative samples with controllable similarity.
Within the ACGCL framework, we have devised a novel adversarial curriculum training methodology.
A comprehensive assessment of ACGCL is conducted through extensive experiments on six well-known benchmark datasets.
arXiv Detail & Related papers (2024-02-16T06:17:50Z) - CARL-G: Clustering-Accelerated Representation Learning on Graphs [18.763104937800215]
We propose a novel clustering-based framework for graph representation learning that uses a loss inspired by Cluster Validation Indices (CVIs)
CARL-G is adaptable to different clustering methods and CVIs, and we show that with the right choice of clustering method and CVI, CARL-G outperforms node classification baselines on 4/5 datasets with up to a 79x training speedup compared to the best-performing baseline.
arXiv Detail & Related papers (2023-06-12T08:14:42Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Adversarial Cross-View Disentangled Graph Contrastive Learning [30.97720522293301]
We introduce ACDGCL, which follows the information bottleneck principle to learn minimal yet sufficient representations from graph data.
We empirically demonstrate that our proposed model outperforms the state-of-the-arts on graph classification task over multiple benchmark datasets.
arXiv Detail & Related papers (2022-09-16T03:48:39Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.