Recording Brain Activity While Listening to Music Using Wearable EEG Devices Combined with Bidirectional Long Short-Term Memory Networks
- URL: http://arxiv.org/abs/2408.12124v1
- Date: Thu, 22 Aug 2024 04:32:22 GMT
- Title: Recording Brain Activity While Listening to Music Using Wearable EEG Devices Combined with Bidirectional Long Short-Term Memory Networks
- Authors: Jingyi Wang, Zhiqun Wang, Guiran Liu,
- Abstract summary: This study aims to address the challenges of efficiently recording and analyzing EEG signals while listening to music.
We propose a method combining Bi-LSTM networks with attention mechanisms for EEG signal processing.
The Bi-LSTM-AttGW model achieved 98.28% accuracy on the SEED dataset and 92.46% on the DEAP dataset in multi-class emotion recognition tasks.
- Score: 1.5570182378422728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG) signals are crucial for investigating brain function and cognitive processes. This study aims to address the challenges of efficiently recording and analyzing high-dimensional EEG signals while listening to music to recognize emotional states. We propose a method combining Bidirectional Long Short-Term Memory (Bi-LSTM) networks with attention mechanisms for EEG signal processing. Using wearable EEG devices, we collected brain activity data from participants listening to music. The data was preprocessed, segmented, and Differential Entropy (DE) features were extracted. We then constructed and trained a Bi-LSTM model to enhance key feature extraction and improve emotion recognition accuracy. Experiments were conducted on the SEED and DEAP datasets. The Bi-LSTM-AttGW model achieved 98.28% accuracy on the SEED dataset and 92.46% on the DEAP dataset in multi-class emotion recognition tasks, significantly outperforming traditional models such as SVM and EEG-Net. This study demonstrates the effectiveness of combining Bi-LSTM with attention mechanisms, providing robust technical support for applications in brain-computer interfaces (BCI) and affective computing. Future work will focus on improving device design, incorporating multimodal data, and further enhancing emotion recognition accuracy, aiming to achieve practical applications in real-world scenarios.
Related papers
- Emotion-Agent: Unsupervised Deep Reinforcement Learning with Distribution-Prototype Reward for Continuous Emotional EEG Analysis [2.1645626994550664]
Continuous electroencephalography (EEG) signals are widely used in affective brain-computer interface (aBCI) applications.
We propose a novel unsupervised deep reinforcement learning framework, called Emotion-Agent, to automatically identify relevant and informative emotional moments from EEG signals.
Emotion-Agent is trained using Proximal Policy Optimization (PPO) to achieve stable and efficient convergence.
arXiv Detail & Related papers (2024-08-22T04:29:25Z) - Decoding Human Emotions: Analyzing Multi-Channel EEG Data using LSTM Networks [0.0]
This study aims to understand and improve the predictive accuracy of emotional state classification by applying a Long Short-Term Memory (LSTM) network to analyze EEG signals.
Using a popular dataset of multi-channel EEG recordings known as DEAP, we look towards leveraging LSTM networks' properties to handle temporal dependencies within EEG signal data.
We obtain accuracies of 89.89%, 90.33%, 90.70%, and 90.54% for arousal, valence, dominance, and likeness, respectively, demonstrating significant improvements in emotion recognition model capabilities.
arXiv Detail & Related papers (2024-08-19T18:10:47Z) - MEEG and AT-DGNN: Improving EEG Emotion Recognition with Music Introducing and Graph-based Learning [8.561375293735733]
We present the MEEG dataset, a multi-modal collection of music-induced electroencephalogram (EEG) recordings.
We introduce the Attention-based Temporal Learner with Dynamic Graph Neural Network (AT-DGNN), a novel framework for EEG-based emotion recognition.
arXiv Detail & Related papers (2024-07-08T01:58:48Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition [9.039355687614076]
This paper presents a novel deep learning approach designed towards remarkably accurate and responsive motor imagery (MI) recognition based on scalp EEG.
BiLSTM with the Attention mechanism manages to derive relevant features from raw EEG signals.
The 0.4-second detection framework has shown effective and efficient prediction based on individual and group-wise training, with 98.81% and 94.64% accuracy, respectively.
arXiv Detail & Related papers (2020-05-02T10:03:40Z) - DeepBrain: Towards Personalized EEG Interaction through Attentional and
Embedded LSTM Learning [20.300051894095173]
We propose an end-to-end solution that enables fine brain-robot interaction (BRI) through embedded learning of coarse EEG signals from the low-cost devices, namely DeepBrain.
Our contributions are two folds: 1) We present a stacked long short term memory (Stacked LSTM) structure with specific pre-processing techniques to handle the time-dependency of EEG signals and their classification.
Our real-world experiments demonstrate that the proposed end-to-end solution with low cost can achieve satisfactory run-time speed, accuracy and energy-efficiency.
arXiv Detail & Related papers (2020-02-06T03:34:08Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.