Transientangelo: Few-Viewpoint Surface Reconstruction Using Single-Photon Lidar
- URL: http://arxiv.org/abs/2408.12191v2
- Date: Fri, 23 Aug 2024 07:26:36 GMT
- Title: Transientangelo: Few-Viewpoint Surface Reconstruction Using Single-Photon Lidar
- Authors: Weihan Luo, Anagh Malik, David B. Lindell,
- Abstract summary: Lidar captures 3D scene geometry by emitting pulses of light to a target and recording the speed-of-light time delay of the reflected light.
conventional lidar systems do not output the raw, captured waveforms of backscattered light.
We develop new regularization strategies that improve robustness to photon noise, enabling accurate surface reconstruction with as few as 10 photons per pixel.
- Score: 8.464054039931245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of few-viewpoint 3D surface reconstruction using raw measurements from a lidar system. Lidar captures 3D scene geometry by emitting pulses of light to a target and recording the speed-of-light time delay of the reflected light. However, conventional lidar systems do not output the raw, captured waveforms of backscattered light; instead, they pre-process these data into a 3D point cloud. Since this procedure typically does not accurately model the noise statistics of the system, exploit spatial priors, or incorporate information about downstream tasks, it ultimately discards useful information that is encoded in raw measurements of backscattered light. Here, we propose to leverage raw measurements captured with a single-photon lidar system from multiple viewpoints to optimize a neural surface representation of a scene. The measurements consist of time-resolved photon count histograms, or transients, which capture information about backscattered light at picosecond time scales. Additionally, we develop new regularization strategies that improve robustness to photon noise, enabling accurate surface reconstruction with as few as 10 photons per pixel. Our method outperforms other techniques for few-viewpoint 3D reconstruction based on depth maps, point clouds, or conventional lidar as demonstrated in simulation and with captured data.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - PlatoNeRF: 3D Reconstruction in Plato's Cave via Single-View Two-Bounce Lidar [25.332440946211236]
3D reconstruction from a single-view is challenging because of the ambiguity from monocular cues and lack of information about occluded regions.
We propose using time-of-flight data captured by a single-photon avalanche diode to overcome these limitations.
We demonstrate that we can reconstruct visible and occluded geometry without data priors or reliance on controlled ambient lighting or scene albedo.
arXiv Detail & Related papers (2023-12-21T18:59:53Z) - Single-pixel 3D imaging based on fusion temporal data of single photon
detector and millimeter-wave radar [18.68262179213498]
This paper proposes a fusion-data-based 3D imaging method that utilizes a single-pixel single-photon detector and a millimeter-wave radar.
The 3D information can be reconstructed from the one-dimensional fusion temporal data by using Artificial Neural Network (ANN)
arXiv Detail & Related papers (2023-10-20T13:03:48Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
We show that in a ''long-burst'', forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth.
We devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion.
arXiv Detail & Related papers (2022-12-22T18:54:34Z) - A CNN Based Approach for the Point-Light Photometric Stereo Problem [26.958763133729846]
We propose a CNN-based approach capable of handling realistic assumptions by leveraging recent improvements of deep neural networks for far-field Photometric Stereo.
Our approach outperforms the state-of-the-art on the DiLiGenT real world dataset.
In order to measure the performance of our approach for near-field point-light source PS data, we introduce LUCES the first real-world 'dataset for near-fieLd point light soUrCe photomEtric Stereo'
arXiv Detail & Related papers (2022-10-10T12:57:12Z) - When the Sun Goes Down: Repairing Photometric Losses for All-Day Depth
Estimation [47.617222712429026]
We show how to use a combination of three techniques to allow the existing photometric losses to work for both day and nighttime images.
First, we introduce a per-pixel neural intensity transformation to compensate for the light changes that occur between successive frames.
Second, we predict a per-pixel residual flow map that we use to correct the reprojection correspondences induced by the estimated ego-motion and depth.
arXiv Detail & Related papers (2022-06-28T09:29:55Z) - Sketched RT3D: How to reconstruct billions of photons per second [12.212273177719227]
Single-photon light detection and ranging (lidar) captures depth and intensity information of a 3D scene.
Reconstructing a scene from observed photons is a challenging task due to spurious detections associated with background illumination sources.
We propose a sketched version of a recent state-of-the-art algorithm which uses point cloud denoisers to provide spatially regularized reconstructions.
arXiv Detail & Related papers (2022-03-02T09:02:52Z) - Towards Non-Line-of-Sight Photography [48.491977359971855]
Non-line-of-sight (NLOS) imaging is based on capturing the multi-bounce indirect reflections from the hidden objects.
Active NLOS imaging systems rely on the capture of the time of flight of light through the scene.
We propose a new problem formulation, called NLOS photography, to specifically address this deficiency.
arXiv Detail & Related papers (2021-09-16T08:07:13Z) - Learning to Recover 3D Scene Shape from a Single Image [98.20106822614392]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape.
arXiv Detail & Related papers (2020-12-17T02:35:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.